Evaluation of Island Frequency Control via Chronological Production Simulations

December 6-7, 2016 San Juan, Puerto Rico

Robert Zavadil Executive Vice President 620 Mabry Hood Road, Suite 300 Knoxville, Tennessee 37932 Tel: (865) 218-4600 ex. 6149 bobz@enernex.com www.enernex.com

Co-Conspirators

- Russ Philbrick PSO
- Bruce Tsuchida The Brattle Group

Alternate Presentation Title: *"How I justified my December trip to the Tropics"*

Background

- Island/isolated power systems can pose interesting engineering challenges
- Attributes of variable renewable generation can be "frightening" with respect to isolated power system operation
- Control of power system frequency is primary operational objective for reliability
- Frequency control performance can vary substantially depending on size, types of units, control sophistication, etc.
- Significant variable renewables will always increase this specific challenge

Power System Frequency Control

- Frequency is key metric of system stability
- Isolated systems vs. Interconnected systems
 - Laws of physics are identical for both
 - Scale is the key differentiator amount of load, number of generating units, geographical diversity, etc.
 - With isolated systems, focus is always on the "whole"
 - Single portion of an interconnection (e.g. operating company, RTO, wholesale energy market) must "support" frequency, but cannot necessarily "control" it

Small System Frequency Control

- Generation/load mismatch translates (much more) directly to frequency deviations
- Normal frequency bounds will likely increase as system size decreases
 - Smaller load, less diversity, larger per-unit deviations
 - Fewer units for control
- Large amounts of variable renewable energy can substantially increase the frequency control challenge
- Question: How can impacts of variable renewable energy on small power system frequency control be assessed?

Integration Study Tools and Techniques

- Chronological production simulation is primary tool
 - Mimics power system operator actions unit commitment and economic dispatch
 - With hourly time steps, all within-hour activities represented as constraints
 - Higher temporal resolutions (e.g. 5 minutes) allow direct simulation of flexible capacity dispatch
 - Long-term (e.g. annual) simulations are needed to capture economics
- Time frames in production simulations do not get directly at frequency control issues
- Other tools needed for detailed assessment

Comprehensive Methodology used by GE for Hawaiian Island Studies

Concept:

Augment production simulation tool to allow more direct examination of isolated system frequency control strategies and performance

En er Ne🗙

Integrated Evaluation:

- Stable frequency control
- Reserve adequacy
- Economics
 associated with
 different strategies
- Cost of frequency control

PSO Prototype Enhancements

- □ Addition of a UR ("Unit Response") library that allows simulation of
 - Stable frequencies achieved after disturbances
 - AGC signals and deployment of regulation reserves
 - ACE and impact of lagging AGC response
 - Generator primary and secondary responses
 - Reliability metrics (CPS1, BAAL violations)
- Can be used to evaluate impacts from future system conditions and policies including
 - Resource mix needed to ensure availability of sufficient response capacity
 - Maintenance scheduling and unit commitment impacts on dynamic availability of response
 - Procurement of regulating reserve and influence on frequency
 - AGC tuning needed to ensure appropriate restoration of nominal frequency
 - System conditions that need transient, stability or protection analysis

Primary vs. Secondary Frequency Response

- Inertial response and PFR not directly considered
- Objective is to estimate Point "D" on chart from governor droop characteristics
- Secondary response is simulated directly
- Some details

EnerNex

- Governor deadbands
- Autonomous response may be invoked without major "disruption"
- Secondary response controlled by AGC

Calculating System Frequency

Definitions

The following equations relate data values used to calculate AGC:

- ACE = NI_A NI_S 10 * B * X
- FT = 3 * FB
- BAAL = $-10 * B * (FT^2 / X)$
- Where ACE Area Control Error: (+) excess export, (-) excess import (MW)
 - NI_A Actual Net Interchange, (+) export, (-) import (MW)
 - NIs Scheduled Net Interchange (MW)
 - B Frequency Bias of balancing authority (MW / 0.1 Hz), negative value
 - X Frequency deviation (Actual Frequency Target Frequency) (Hz)
 - FB Targeted Frequency Bound of interconnection (deviation from target) (Hz)
 - FT Frequency Trigger of interconnection (deviation from target) (Hz)
 - BAAL Balancing Authority AGC Limits (MW)

PSO Implementation

- Libraries that allow
 definition of generator and area autonomous response to frequency ^{6.1.1.3} deviations
- AGC libraries specify closed loop control of units dispatched in the last model cycle

6.1.1.1 INJECTOR AUTONOMOUS PRIMARY RESPONSE (INJ_APR)

Record	Туре	Description
Injector	char	{ injectors }
R	float	Per-unit change in frequency divided by per-unit change in power output
Deadband	float	(Hz) Identifies sufficiently-large deviation from nominal frequency

3 AREA AUTONOMOUS PRIMARY RESPONSE (ARA_APR)

Record	Туре	Description
Area	char	{ areas }
D	float	Per-unit change in area load divided by per-unit change in frequency

6.1.2.1 AREA AGC (ARA_AGC)

Record	Туре	Description
Area	char	{ areas } Balancing area
В	float	(MW/0.1Hz) Balancing area frequency bias
NCB	float	(MW) Normal control band
KI	float	(MW/MWh) Integral impact of accumulated ACE on AGC
KP	float	(MW/MW) Proportional impact of current ACE on AGC
KE	float	(MW/MWh) Emergency impact of current BAAL violation on AGC

6.1.2.2 INJECTOR AGC (INJ_AGC)

Record	Туре	Description
Injector	char	{ injectors }
Factor	char	Participation Factor

Illustration

- Generic island power system "Bob's Island"
 - ~80 MW peak load
 - Conventional generators
 - » Baseload steam-injected base load unit
 - » Several diesels of various sizes
 - » More expensive gas turbines
 - Approximately 27 MW of solar; 3 separate projects
- Three overlapping, rolling decision cycles
 - 15 minutes ahead
 - Economic dispatch at 5 minute intervals
 - AGC cycle at 1 minute time step (deploy frequency control reserves based on output of AGC)
- Assess how PV affects frequency control

Commitment & Dispatch for 7 Days

Better view of Day 4

- Without PV, frequency control is tight except for instants when generators are shut down
- Frequency control is much poorer under variable PV generation conditions

Applications

- Small Isolated Systems assessing frequency control strategies, performance, and costs
 - Islands
 - Hybrid power systems
 - Micro-grids
- Large Interconnections evaluating secondary frequency control for avoiding BAAL violations
 - When interconnection frequency is near scheduled value, allowable ACE (Balancing Authority ACE Limit) is very large
 - As frequency error increases, BAAL decreases
 - When outside of these limits, operators must get back in bounds within 30 minutes
 - Because a single BAAL violation can carry significant financial penalties, current operation practice appears to be maintaining very tight control limits at all times

Issues & Questions

- Validation
- Parameter derivation
- High temporal dataset construction
- Necessary model time step?

Thanks!

Bob Zavadil EnerNex Executive Vice President 620 Mabry Hood Road, Suite 300 Knoxville, Tennessee 37932 Tel: (865) 218-4600 ex. 6149 bobz@enernex.com www.enernex.com