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H I G H L I G H T S :  

• Development of high-quality probabilistic solar forecasting for present and future solar PV buildouts in Southern Company system. 
• A quantitative method is developed to quantify the value of probabilistic solar forecasting for grid operations. 
• Transformation of probabilistic forecasts to facilitate grid operations by using a probabilistic dynamic reserve requirement approach. 
• Simulation results from the Southern company system show that using dynamic reserves determined from probabilistic forecasts are beneficial to the system 

compared to using static reserve requirements.  
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A B S T R A C T   

A recent key research area in renewable energy integration is the development of tools and methods to capture 
and accommodate the uncertainty associated with the forecast errors. While the research community has pro
posed numerous methods to improve the accuracy of probabilistic forecasts, their application to operational 
planning is still an open question. This work applies dynamic reserve determination methods to solar probabi
listic forecasts and then feed them to a commercial production cost model simulator to assess the value of 
capturing the uncertainty endogenously in the reserve determination process. Testing is carried out on a cali
brated real-size system representing the Southern Company for medium, and high solar penetration levels. 
Numerical results demonstrate the benefits that can be attained by explicitly modeling probabilistic uncertainty 
in terms of operating cost, and enhanced system reliability which is measured as the quantity of balancing and 
reserve violations. Additionally, these methods and results can pave the way for system operators to adopt 
probabilistic forecasting to draw the operating plans of the system, and this allowing the successful integration of 
variable renewable energy sources.   

1. Introduction 

The integration of solar photovoltaics (PV) into electric power grids 
has been gaining momentum in recent years due to declining costs and 
technology improvements. As of 2021, the worldwide cumulative 
installed PV capacity reached about 800 GW, and the total amount is 
expected to reach 8,500 GW by 2050 [1]. In the U.S., half of the new 
utility-scale electric generating capacity to be added to the power grids 
during 2022 will be solar [2]. A recent study from the U.S. Department 
of Energy shows that solar energy has the potential to supply 40% of the 

nation’s electricity demand by 2035 [3]. With deeper penetrations of 
solar power in power systems, there is a need for accurate forecasting 
that includes not only the “best guess” but also “the probabilistic uncer
tainty surrounding the best guess”. Utilities and independent system op
erators (ISOs) must manage power grids with increasing levels of 
stochastic generating resources to maintain reliable and economic 
operations. 

Solar forecasting methods can be divided into two categories: 
physical methods and statistical methods. The former use numerical 
weather prediction (NWP) models (usually in medium- and long-term) 
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to forecast solar irradiance, which is then used to calculate the power 
output from solar PV plants in particular regions. The latter uses his
torical and/or real-time spatio-temporal data from satellites, sky cam
eras or from the PV plant itself to correct the results derived from the 
physical methods or to produce solar power forecasts through statistical 
models like lag-regression or machine learning. Recent studies have 
shown that hybrid models of machine learning and numerical modeling 
may perform better than using them individually [4]. With increasing 
computer speed and storage capacity, and advancements in machine 
learning algorithms in the past 15 years, substantial progress has been 
made in the accuracy of solar forecasting. For instance, the IBM has 
developed a solar forecasting system that is up to 30% more accurate 
than the conventional approaches by using machine learning, big data, 
and analytics to continuously analyze several weather models [5]. 
However, the output of these physical and statistical models is still a 
deterministic forecast which provides no information on expected 
uncertainty. 

Many balancing authorities currently use solar forecasting in oper
ations, but they generally rely on single-valued forecasts. Historically, 
attempts to obtain more value from forecast information have focused 
on improving the mean-square error (MSE) accuracy with less effort on 
quantifying the uncertainty of the prediction. This uncertainty is an 
essential ingredient for optimal decision making in power systems with 
high renewable penetration levels. A “perfect” deterministic forecast 
will never be achieved due to the chaotic dynamics of the atmosphere, 
which increases the risk of balancing the grids in real-time. As such, 
there is increasing interest in probabilistic forecasts that are tuned to 
grid events. 

Some utilities have taken steps towards the integration of probabi
listic forecasts. For example, the Swiss power system operator (Swiss
grid) is using probabilistic information to determine balancing reserves 
required [6]. Hawaiian Electric Light is using an advanced meteoro
logical sensor network to produce high resolution probabilistic forecasts 
(SWIFT) with greater quantification of uncertainty [7]. California ISO, 
the Midcontinent ISO, Xcel Energy in Colorado, and others have estab
lished ancillary services to manage increasing net-load uncertainty. The 
requirements for these products, often termed flexible ramping products 
or load-following reserves, are usually determined based on observed 
short-term forecast error [8]. However, requirements are updated on a 
seasonal basis and capture only historical variability and uncertainty. 
Also, as renewable penetration increases, updates may be needed closer 
to real-time based on the uncertainty identified by probabilistic forecasts 
[38]. 

Research into probabilistic solar power forecasting is broadly 
divided into three categories: methodological developments, perfor
mance benchmarks, and grid integration impacts. In the first category, 
researchers focus on developing methods to improve the quality of 

probabilistic solar forecasting: calibration methods based on the Solar 
Ensemble System [9], forecasts based on variational Bayesian inference 
[10], a two-stage probabilistic forecasting algorithm based on bivariate 
conditional solar irradiation distributions [11], and a kernel dressing 
technique based on Bayesian model averaging post-processing [12]. In 
the second category, researchers focus on benchmark models to evaluate 
the performance of probabilistic solar forecasting methods: Ref, [13] 
compared various popular probabilistic solar forecasting methods using 
a standardized dataset at Folsom, California; Ref. [14] developed an 
open-source solar forecasting evaluation framework to support the U.S. 
Department of Energy’s Solar Forecasting II program and the broader 
solar forecast community; Ref. [15] developed a new climatology 
reference model to benchmark probabilistic solar forecasts. In the third 
category, there are as yet few published examples and none have focused 
on benefits of implementing probabilistic solar forecast in power system 
operations: Ref. [16] conducted a review on the current use of proba
bilistic solar forecasting in power systems; Ref. [17] described the pro
curement of ramping product and regulation in California ISO using 
probabilistic solar power forecasts; and Ref. [18] explored the use of 
probabilistic renewable power forecast in stochastic optimization. 

Ref. [39] developed a method to incorporate uncertainty of wind 
power generation forecast into power system operation, dispatch, and 
unit commitment procedures. It proposed three levels of probabilistic 
tool integration: passive integration which simply displays the proba
bilistic information in the control center for system operators’ situa
tional awareness, active integration which uses uncertainty information 
to rerun the unit commitment (UC) and economic dispatch (ED) pro
cesses for the worst scenarios, and proactive integration which will add 
new constraints like the ramping requirement into the UC ad ED models. 
One weakness of the paper is that it focuses more on high-level de
scriptions, lacking quantitative analysis. In addition, considering the 
worst scenario in the “active integration” level may lead to over- 
conservative operating outcomes. A more practical method to deal 
with solar uncertainty was proposed in [40], which calculates the 
reserve requirements of a microgrid by taking into account the solar and 
load forecasting uncertainty. However, the proposed method has not 
been tested on bulk power systems. Refs. [42,43] demonstrated that the 
ISOs can take advantage of probabilistic solar forecast by using it to 
better determine the reserve requirement of the flexible ramping prod
ucts, which can lower the generation costs and improve the reliability of 
power systems. Similarly, Ref. [44] developed a data-driven method to 
better estimate the system’s ramping needs based on short-term prob
abilistic solar irradiance forecasts. However, these approaches may not 
apply to the ISOs that have yet introduced the flexible ramping products 
[8]. Our previous research in [35] has demonstrated a practical 
approach to determine the dynamic reserve requirements by leveraging 
probabilistic forecasts, but the approach has not been integrated into the 
grid operation process. To bridge the gap in the literature, this work 
develops a quantitative method to quantify the value of probabilistic 
solar forecasting for grid operations. The major contributions of this 
paper include: (1) Developed a framework to integrate the probabilistic 
forecasts into power system operation planning process, (2) Validated 
the proposed approach using real-world grid operation data from the 
Southern Company (SoCo) in the U.S. [19,20], and (3) Conducted in- 
depth analysis on the value of probabilistic forecasts for power system 
operation planning. Note that although this paper focuses on solar 
forecasting, the proposed approach also applies to probabilistic fore
casting of wind power and system demand. 

The reminder of the document is organized as follows. Section 2 
presents an overview for the development of probabilistic solar fore
casting for various solar PV buildouts. Section 3 proposes a method to 
transfer the probabilistic information into information that can be 
consumed for grid operation purposes. Section 4 discusses the produc
tion cost modeling (PCM) simulation framework and the design of 
studied scenarios. Section 5 presents simulation results. Finally, section 
6 presents conclusions. 

Fig. 1. A summary of the workflow to generate and improve probabilistic 
solar forecasts. 
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2. Development of probabilistic solar forecasting for present and 
future solar PV buildouts 

2.1. Probabilistic solar forecasting methodology 

Ensuring high-quality probabilistic forecasts is key for their suc
cessful application. As part of a U.S. Department of Energy funded 
project “Operational Probabilistic Tools for Solar Uncertainty (OPT
SUN)” [24], we have developed new methods that are applied to existing 
probabilistic solar forecasting practices to produce the improved fore
casts. The process is summarized in Fig. 1 and detailed as follows. 

1. In the first step, historical and real-time probabilistic and deter
ministic forecasts of solar generation at real and hypothetical PV 
facilities of interest are generated by our collaborators at UL. Prob
abilistic solar power forecast models were developed, and their 
forecasts were generated for hourly time resolutions up to 168 h 
ahead, for distributed and central solar PV. These baseline forecasts, 
delivered for the desired year, were analyzed to assess the potential 
for forecasting performance improvements. The solar forecast system 
used in this work includes modules that perform the following 
functions: (1) Estimating global horizontal irradiance (GHI) from 
satellite imagery in near-real time; (2) Extrapolating current cloud 
positions and motion from satellite imagery into the near future, and 
derive short-term forecasts of GHI from these extrapolated cloud 
fields; (3) Calculating plane-of-array irradiance given sun position 
and GHI, including estimation of direct normal irradiance from GHI 
and sun angle; (4) Retrieving Numerical weather prediction (NWP) 
model fields from several national weather services, and extract and 
archive forecasts for fixed locations; (5) Employing a machine- 
learning system that relates past NWP forecasts to observed gener
ation directly to forecast PV generation from real-time NWP fore
casts; (6) Producing final ensemble forecasts of solar generation from 
forecasts produced by the satellite-based and NWP-based forecast 
systems.  

2. In the second step, probabilistic forecasting was implemented by 
converting the NWP-based machine-learning system from one that 
was trained to produce a single-valued forecast for each lead time to 
one that produced forecasts of the probability that generation would 
exceed a range of values, fixed fractions of the maximum possible 
generation at each generation station or aggregate of stations. These 
forecasts of the probability that generation would fall above or below 
a set of bin thresholds could then be converted to forecasts of gen
eration at fixed probability-of-exceedance thresholds, by first 
calculating the cumulative sum of probability over the range of bin 
edges from zero generation to maximum generation, and then 
interpolating in the curve to fixed levels of probability.  

3. In the third step, additional improvements were developed in the 
machine-learning training method, to better account for correlations 
between predictor variables and to rank predictors so that those with 
little additional information relative to others were demoted. The 
predictors include NWP model output from the US, UK, German, 
Canadian, and European weather services, and satellite imagery 
processed to provide an estimate of surface solar irradiance, as well 
as recent observations of generation that provide predictive skill due 
to persistence. Persistence arises in solar generation from the spatial 
and temporal autocorrelation of surface irradiance, which itself ari
ses largely from the spatial and temporal scale of clouds. These 
methods resulted in significant improvements in the forecast skill as 
measured by the Ignorance Score [21], from 5% to 10% compared to 
the original quantile regression method. More metrics to evaluate the 
performance of the probabilistic solar forecasting are shown in Ap
pendix A. 

2.2. Development of probabilistic solar forecasts for future buildout of 
power systems 

Simulations of operational probabilistic forecasts and actual pro
duction were also needed for the expected solar buildout in the future. In 
this section, we use the SoCo system as an instance to demonstrate how 
the solar PV generation and probabilistic forecasts of solar PV genera
tion were generated for future buildout. Generation stations were 
assumed to be of fixed size (25 MW) and were distributed in random 
clusters, subject to land use constraints with a preferred proximity to 
population centers, and a minimum separation of 3 km, to represent a 
preference to constrain excessive aesthetic impacts on communities. The 
DC/AC ratios were set to be 1.5 in accordance with SoCo’s expectations. 
To generate timeseries of generation, satellite based GHI analysis 
method was used. We obtained approximately 160,000 visible and 
infrared satellite images from the GOES 16 satellite [22] on a grid with a 
horizontal resolution of approximately 0.5 km at 60-minute intervals for 
2018 through 2020. These images were analyzed to generate estimates 
of global horizontal irradiance on the same horizontal grid.  

1. The first step in the process of generating accurate GHI estimates 
from geostationary satellite images involves an explicit calculation of 
atmospheric transmissivity using the red visible channel imagery. 
The forward transmissivity calculation involves first the generation 
of a climatology of minimum pixel brightness at each hour of the day, 
so that variations in surface reflectivity are removed from the signal 
of total reflectivity, and correspondence of reflectivity to atmo
spheric reflectivity are maximized.  

2. In the second step of the process, a machine-learning model is trained 
to use the transmissivity calculated from the red visible channel, 
along with radiances from multiple infrared channels and the blue 
visible channel reflectivity, and solar azimuth and zenith angle, as 
well as satellite view angle to predict surface observations of global 
horizontal irradiance from sources such as the Surfrad, Solrad, and 
ARM networks. Once these GHI timeseries were generated, the PVlib 
python library [23] was used to synthesize the resulting generation 
timeseries from 25 MW solar farms, some with fixed panels tilted 
toward the south at an angle two degrees less than the local latitude, 
some with north–south oriented single-axis solar tracking. According 
to the preferences of the collaborators at SoCo, a 1:4 ratio of fixed to 
tracking plants in SoCo’s service area was used. 

By using the approaches described above, we developed the proba
bilistic forecasts of solar generation for both present and future solar PV 
buildouts at three targeted utilities in the U.S., as part of the OPTSUN 
project. Test results show that our approach has resulted in a 5–10% 
improvement in forecast skills compared with conventional methods. 

3. Transformation of probabilistic forecasts to facilitate grid 
Operations: A probabilistic dynamic reserve requirement 
approach 

Although the probabilistic forecasts contain more information than 
the deterministic forecasts, they cannot be directly used without trans
formation in today’s commercial production cost models, PLEXOS [25], 
PROMOD [26], MAPS [27], PSO [28], nor in SO-dedicated security- 
constrained unit commitment (SCUC) and security-constrained eco
nomic dispatch (SCED) models [29]. There are generally two ap
proaches to address this issue. The first consists in replacing the 
deterministic scheduling tool by a stochastic one which allows including 
scenarios generated from the probabilistic forecast [30–32] to deter
mine the schedule and dispatch considering the uncertainty modeled 
with the scenarios. The second approach requires transforming the 
probabilistic information into dynamic reserve requirements (DRRs), 
which are enforced as reserve constraints in the existing deterministic 
scheduling models [33–35]. This work focuses on the latter approach 
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since it does not require any modifications to the present scheduling 
models, nor to the interpretations of results such as energy and ancillary 
services prices. Detailed formulations of the probabilistic DRR approach 
are available in our previous publication [35], and it is summarized in 
Fig. 2. 

The method shown in Fig. 2 works as follows: In step (1), the 
methods described in section 2 are used to generate the probabilistic 

solar power generation. The step (2) is to transform the probabilistic 
forecasts into chronologically correlated probabilistic scenarios (see the 
examples of Figs. 3 and 4 in Section 5). The number of scenarios N is 
defined by the users and is set to 5000 in this study. The probabilities of 
the N scenarios can also be calculated with respect to their individual 
materializations in the various parts of the uncertainty thresholds. In 
step (3), the system’s DRRs are calculated for each individual scenario (i. 
e., anticipated forecast). Given a desired confidence interval (CI), the 
DRRs are a quantile function of the exact historical reserve needs which 
are the difference between actual quantities and forecasted quantities. In 
step (4), the probabilistic DRRs are calculated. Five different approaches 
could be used to determine the probabilistic DRRs:  

i. All scenarios method (P1), where all the scenarios determined in 
step 2 will be used. The expected requirements are the weighted 
sum of the DRRs calculated in step 3 for all scenarios with the 
weight factors being the probabilities of the scenarios.  

ii. Extreme scenarios method (P2), where only extreme scenarios in 
step 2 will be used. The expected requirements are the weighted 
sum of the DRRs for extreme scenarios.  

iii. Bounds of extreme scenarios method (P3), where historical 
forecast data is not needed and only the expected worst upward 
and downward scenarios (i.e., the extreme scenarios) will be 
used. The probabilistic DRRs are the difference between the 
central forecast and the weighted sum of the probabilistic fore
casts for the extreme scenarios (determined in step 2). 

iv. Prediction interval method (P4), which uses the cumulative dis
tribution function (CDF), denoted as F( • ), of probabilistic fore
casts directly. Given the desired prediction interval α, the 
probabilistic DRRs are the difference between F− 1(1 − α) and 
F− 1(0.5) where F− 1( • ) is the inverse function of the CDF.  

v. Hybrid method, which combines any of the four methods above 
or any other alternatives (e.g., deterministic reserves) available 
to the user. 

According to [35] P1 and P2 are categorized as recursive methods, 
since the DRRs for each of the probabilistic scenarios is obtained from a 
training done on datasets of historical deviations. The P3 and P4 are 
categorized as anticipative methods, since they rely only on the 

Fig. 2. The process to determine different types of probabilistic dynamic 
reserve requirements. 

Fig. 3. Probabilistic solar forecasting for one week (Sep. 2nd–8th) in SoCo system with 20 GW solar penetration.  
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probabilistic forecasts to calculate the DRRs. Hence, the P1 and P2 are 
suitable for cases when the forecasted conditions have similar charac
teristics with previously observed data, and P3 and P4 are suitable for 
capturing the “unique” events that may not be observed in historical 
data (e.g., weather-driven events). A fifth category is composed by 
hybrid methods that combine the benefits of recursive and anticipative 
methods and that has the potential of outperforming any of the induvial 
recursive or anticipative methods. The formulations of the P1 to P4 
methods are shown in Appendix B. 

4. Modeling and production simulation for the SoCo system 

4.1. Description of the SoCo system for base case study 

A calibrated model of the year 2019s SoCo system is used to 
benchmark the base case modeling, and two future cases with increased 
levels of solar penetration are examined. The entire SoCo balancing area 
footprint is modeled in this work. SoCo had a 2019 peak demand of 
about 38,500 MW which occurred in mid-August. The annual demand 
was met by coal (22%), natural gas (50%), nuclear (16%), and renew
ables, including hydro (12%). The total solar generation capacity in 
2019 was about 2.3 GW. SoCo has a long-term emissions reduction goal 
of net-zero emissions by 2050. To meet the goal, solar power generation 
is expected to play a significant role. The base case has, by nameplate 
capacity: 15% coal, 59% gas, 5% nuclear, 11% oil, 9 % biomass, and 1% 
pumped storage (PS). The hydro, wind and solar are modeled on the 
system-level rather than at the individual resource level. Hourly time- 
series data for hydro, wind and solar generation and system demand 
for 2019 were provided by SoCo. The solar forecasting and generation 
data for future high-solar scenarios were determined with the approach 
described in section 2. Other operating characteristics and parameters 
needed for the model include: 

i. Fuel price: The fuel prices of coal, natural gas and oil at each fa
cility were provided by SoCo on a monthly basis, with the same 
prices used for all future periods. This may be unrealistic in terms 
of the absolute numbers for production costs, but as the focus is 

on comparison of different uses of forecast information, it is not 
likely to have a significant impact.  

ii. Modeling of pumped storage units: There are three pumped storage 
hydro (PSH) units in SoCo. These units can run in both generation 
and pump modes. When running in pump mode, the maximum 
limit and minimum limit of the unit are identical, i.e., it can only 
provide a fixed quantity of load consumption. When running in 
generation mode, there are two units whose maximum limit and 
minimum limit are identical (i.e., they cannot provide flexible 
services) and there is one unit whose minimum limit is smaller 
than its maximum limit (i.e., it can ramp up and down while 
being dispatched). In addition, in the simulations, additional 
constraints are added to the model to prevent simultaneous 
charging and discharging for all generators and pumps at a 
reservoir.  

iii. Outages of units: the outage data for each unit was provided by 
SoCo on a seasonal basis.  

iv. Operating characteristics of conventional resources: The operating 
characteristics of the thermal power plants such as combustion 
turbines, combined cycle gas turbines, steam resources and nu
clear resources were obtained from SoCo, including a resource’s 
minimum generating capacity, maximum generating capacity, 
ramp-up rate, ramp-down rate, minimum off time, minimum run 
time, startup time, shut-down time, fixed costs such as startup, 
shut-down and no-load costs, fuel costs and incremental heat 
rates. In some cases, these were summarized based on average 
data for the fleet, to avoid the need to provide detailed confi
dential information.  

v. Load: Hourly resolution aggregated load data for the SoCo system 
for two historical years were provided by SoCo.  

vi. Wind and solar capacity: Compared with solar, the capacity of 
wind resources in SoCo is relatively low. The maximum value of 
the total wind generation in 2019 was less than 300 MW, while 
the maximum value of solar generation was almost 2 GW in 2019.  

vii. Wind forecast and generation: The hourly resolution aggregated 
wind generation data from two historical years were provided by 
SoCo. The data includes both the day ahead forecast and the 
actual output in real-time. The forecasted and actual wind output 

Fig. 4. Probabilistic scenarios generated from the probabilistic solar forecasting for Sep. 2nd–8th in SoCo system with 20 GW solar penetration.  
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data is used to determine the reserve requirements along with the 
solar data.  

viii. Regulation up and down reserves: The regulation up and down 
reserve requirement in SoCo system varies over time, with an 
average value of about 500 MW over a year. SoCo provided the 
hourly resolution time-series data of regulation up and down 
reserve requirements from one historical year. 

4.2. SoCo’s scheduling process 

In the SoCo model, cycles are used to represent decision making 
processes. Each cycle is a “rolling horizon” model used to mimic a spe
cific decision process. A “multi-cycle” modeling framework is adopted to 
simulate the operating decision processes with fidelity. In this study, 
three operating cycles are modeled for the simulations to reflect the 
operational processes of SoCo:  

• Two week-ahead (2WA): The 2WA cycle, which happens once per 
day, determines the commitment status of units with long minimum 
on/off time (≥24 h). The fuel types of these units include nuclear, 
coal and natural gas. The optimization horizon of the 2WA cycle is 
14 days from D + 1 to D + 14 where D is the day in which the de
cision is made. In the SoCo power system, the maximum value of the 
minimum on/off time of the thermal units is assumed to be 168 h (or 
7 days). These include some coal, nuclear and natural gas units. 
Hence, the optimization horizon of the 2WA cycle is long enough for 
the system to make effective unit commitment (UC) decisions for 
those units.  

• Day-ahead (DA): The DA cycle, occurs once per day, a day in advance 
of actual operation, and it serves to commits units with start-up time 
and/or minimum on/off time are greater than 2 h but less than 24 h. 
The optimization horizon of the DA cycle is 2 days from D + 1 to D +
2 where D + 1 is the day when the final decisions are made and D + 2 
is the look-ahead period.  

• Two-hour ahead (2HA): The 2HA cycle commit units whose start up 
time and/or minimum on/off time are less than or equal to 2 h. The 
2HA UC process will be run for each hour. The optimization horizon 
of the 2HA cycle is H + 2 to H + 4 where H is the hour in which the 
decision is made. The purpose of the 2HA cycle is to efficiently plan 
near-term resource commitments in the real-time market 

Note that the SoCo system does not have a typical 5-minute real-time 
(RT) dispatch cycle, since the RT dispatch is conducted in the Energy 
Management System with automatic generation control for every 4 s. 
Also note that SoCo can make additional updates to the plan between the 
decision times indicated here, and thus have more flexibility in actual 
operations. 

4.3. Assessment of reserve requirements in the SoCo system 

The SoCo system uses static contingency and operating reserve re
quirements for operations together with time varying regulation 

requirements, as shown in Table 1. Four types of reserves are imple
mented, including regulation up, regulation down, contingency reserve 
and operating reserve. The activation time for regulation up/down re
serves is 10 min. The contingency reserve is provided by resources that 
can be brought online in ten minutes, including quick start combustion 
turbine units. Once a unit is called on to provide the contingency 
reserve, it must be available for at least 30 min. The operating reserve is 
provided by units that are capable to respond in 90 min and are able to 
provide service for at least 90 min. The regulation reserve requirement, 
denoted by r, varies by hour but the same amount is procured by hour for 
each day. The regulation reserve can substitute for the contingency 
reserve, and the Contingency reserve can substitute for the Operating 
reserve. In the 2WA and DA cycles, the total requirement for Contin
gency reserve and Operating reserve is 2000 MW and 5000 MW 
respectively. Table 1 also shows the settings for dynamic reserve re
quirements that were implemented as a focus point in this article. 

Instead of adding a new type of reserve called “dynamic reserve” or 
“flexibility reserve”, this study incorporates the dynamic reserve into the 
contingency reserve, i.e., setting the new contingency reserve require
ment to 1250-r + Dynamic Reserve, where the Dynamic Reserve can be 
obtained with either deterministic forecasting or probabilistic fore
casting using the method described in Section 3.1 As that reserve is 
released in real time, it is essentially replacing a 750 MW static 
requirement in the DA time frame (2000 MW minus 750 MW). This al
lows for the capacity that is released in RT to manage forecast error to 
vary, while still maintaining the 1250 MW contingency reserve 
requirement to cover outages. The aim of the study is thus to compare 
the performance of dynamic reserve requirement to the performance of 
the 750 MW static requirements. This comparison is then extended to 
the different methods proposed in [35] to compute the dynamic reserve 
requirements using probabilistic forecasts. 

Since the capacity of wind power is relatively low compared to solar 
power in the SoCo system, we only investigated the probabilistic fore
casts for solar power. However, the impact of wind power on the reserve 
determination has been considered in the model—by using deterministic 
wind forecast data. In Eq. (A1) of Appendix B, the exact reserve 
requirement εt is the difference of the forecasted generation and the 
actual generation for both wind and solar. On the other hand, we think 
that it is necessary to consider probabilistic wind forecasts when the 
wind capacity in the system is high. Under this circumstance, N proba
bilistic scenarios will be generated for both wind generation and solar 
generation in step 2) of Fig. 2. 

5. Study results and analyses 

In this work the Power System Optimizer (PSO) software tool [36] is 
used to model the scheduling process of SoCo system. To evaluate the 
benefits of using probabilistic forecasting for grid operations, the 
scheduling results using PDRRs are compared to those obtained using 
DDRRs, where the PDRRs are obtained from probabilistic forecasts and 
the DDRRs are obtained from deterministic forecasts. The metrics using 
for the comparisons include total fuel cost, total production cost, re
serves violation, and power balance violations, which have been used 
for similar studies, [20,37]. 

The base case, which represents the current operating conditions for 
the SoCo system and contains about 2 GW solar, was implemented at 
first. Results for the base case model are used to validate the model and 
compared with the actual operating data in SoCo system. Although 
satisfactory results were obtained from the base case model, they were 
not subjected to the level of validation normally applied to operational 
models; the focus of this project was to show the value of probabilistic 

Table 1 
A comparison of static and dynamic upward reserve requirements for SoCo 
system.  

Reserve Method Reserve 
Type 

Reserve Requirement 
in 2WA and DA cycles 

Reserve 
Requirement in 
2HA cycle 

Static Reserve 
Requirement 

Regulation r r 
Contingency 2,000-r 1,250-r 
Operating 3,000 3,000 

Dynamic reserve 
requirement 

Regulation r r 
Contingency 1,250-r + Dynamic 

Reserve 
1,250-r 

Operating 3,000 3,000  

1 Note that this is valid only when the new reserve has the same activation 
time as the contingency reserve. In other systems if the activation times are 
different, a new reserve will need to be defined. 
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solar forecasting on higher solar penetration levels of future systems – 
here, cases with 7 GW solar (i.e., the medium solar case) and 20 GW 
solar (i.e., the high solar case). Following the guidance from SoCo, 
modest resource addition and retirement assumptions were made in the 
7 GW and 20 GW solar cases. 

5.1. Probabilistic solar forecasting results 

To facilitate studies for the future scenarios, solar PV generation and 
probabilistic forecasts of solar PV generation were generated for the 
SoCo system. Fig. 3 shows the probabilistic solar power forecast for 1 
week (Sep. 2nd to 8th) in SoCo system for the future high-solar PV 
buildout (i.e., 20 GW solar). The dashed back line in the figure shows the 
central forecast of solar power generation in each hour. The blue areas 
provide the upper and lower bounds of the solar power generation at 
different probabilistic thresholds (e.g., 100%, 90%, 80%, 70%, 60% and 
50%). For example, the area labeled by “PI (prediction interval) = 90%” 
means there is a 90% probability that the solar power generation is 
within the upper and lower bounds of this area. Note that in many hours 
of the day the lower bounds of 100% PI are relatively low, which leads to 
wide forecasting areas for the 100% prediction intervals. After con
ducting a thorough investigation, certain shortcomings were discovered 
in the lower bounds of the forecast data utilized in this study. Although 
these shortcomings are unlikely to affect the overall patterns or meth
odology, they are critical considerations for the application of the 
research and necessitate further attention in future studies. 

5.2. Transformation of probabilistic forecasts 

The original probabilistic forecasts in Fig. 3 cannot be used directly 
in grid operations. Hence, it is necessary to use the method in Section 3 

to transform the probabilistic forecasts into chronologically correlated 
probabilistic scenarios. Fig. 4 shows the probabilistic scenarios gener
ated from the data in Fig. 3. Note that the transformation in Fig. 4 
contains the same information as Fig. 3 but in a useable format. 

5.3. Dynamic reserve results 

Fig. 5 shows the dynamic reserve results on a specific day (i.e., Sep. 
2nd) on SoCo system with 20 GW solar. Fig. 5 (a) shows the curves of 
deterministic dynamic reserve requirements (DDRRs) and three proba
bilistic dynamic reserve requirements (PDRRs) with 95% CI. The re
serves obtained with P1 are not presented since by considering all 
scenarios, they tend to the average (most likely materialization) which is 
what is also obtained when using the best guess in the deterministic 
method. It is observed that on this specific day the P4 method leads to 
larger DRRs than the P3 method, P3 method higher than P2 method, and 
P2 method larger than deterministic method. However, this may not 
always be the case on days with different probabilistic forecast. Fig. 5 (b) 
shows how the DRRs change with CI values under the same method. 
Using high CI values lead to larger the reserve requirements since a 
wider spread of the uncertainty is being covered. 

5.4. Annual production simulation results 

In this case, multiple methods were used to compute dynamic reserve 
requirements for a year horizon in SoCo as described in Section 3. 
Annual production cost simulations are conducted for the reserve re
quirements obtained with each of the described models. Selected 
simulation results for 7 GW and 20 GW solar cases are shown in Table 2 
and Table 3 respectively. Results from the deterministic (Det.) method 
are used for benchmarking. The deterministic forecasts were set to 50th 

Fig. 5. Dynamic reserve requirements obtained with different methods and confidence intervals on day Sep. 2nd on SoCo system.  

Table 2 
Annual simulation results on SoCo system with medium solar.  

Methods Det. Static P3 (90%) P3 (99%) P4 (90%) P4 (99%) Hybrid 

Annual fuel cost w/o penalties ($) 2,997 M 2,997 M 2,998 M 3,006 M 2,997 M 3,013 M 3.013 M  
(↑ 0.0%) (↑0.002%) (↑ 0.3%) (↓0.03%) (↑ 0.5%) (↑ 0.5%) 

Annual total cost w/ penalties ($) 3,004 M 3,004 M 2,999 M 3,008 M 3,001 M 3,013 M 3,013 M  
(↑ 0.0%) (↓ 0.17%) (↑ 0.13%) (↓0.09%) (↑ 0.3%) (↑ 0.3%) 

Reg. Down violation (MWh) 3,490 3,522 2,831 797 1,934 896 163  
(↑ 1%) (↓ 19%) (↓ 77%) (↓ 45%) (↓ 74%) (↓ 95%) 

Operating reserve violation (MWh) 1,995 2,404 2,323 641 2,048 229 139  
(↑ 20%) (↑ 16%) (↓ 68%) (↑ 3%) (↓ 89%) (↓ 93%) 

Total reserve violation (MWh) 5,485 5,927 5,154 1,438 3,983 1,125 302  
(↑ 8%) (↓ 6%) (↓ 74%) (↓ 27%) (↓ 79%) (↓ 94%) 

Balance violation 0 0 0 0 0 0 0  
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percentile of the probabilistic forecasts. To make a fair comparison, the 
static reserve requirement is set to the average value of deterministic 
dynamic reserves over the whole horizon. Reserve violations and/or 
balance violations are reported in the tables, and positive values of them 
mean that there are reserve and/or energy shortages in those cases. 

For probabilistic methods, P3 and P4 under 90% and 99% robustness 
are chosen for demonstration—these are both anticipative methods and 
therefore only use the probabilistic forecasts, and do not rely on his
torical data. The results for P1 and P2 methods are presented in the next 
section. The hybrid method is created by combining P4 (99%) and the 
deterministic method. 

For the 7 GW (medium solar) case, there are no power balance vio
lations in any case, reflecting that the system can successfully accom
modate 7 GW solar generation without balancing violations or load 

shedding. The fuel cost in the table shows the cost from thermal units, 
while the total cost includes both the fuel cost and the penalties derived 
from constraint violations. Both are useful results to examine – fuel costs 
alone are likely more reflective of the actual operating costs and so 
should be the main result examined, as penalty costs are based on an 
arbitrarily set penalty value. However, the objective function being 
optimized for does include the penalty value also, so it is worth under
standing how that changes as well. Violations of regulation up and 
contingency reserve requirements are not found in all the cases. 
Although regulation down reserve violations are observed in all cases, 
these are not concern to the system since in actual system operations the 
system operator should be able to curtail the solar to meet the regulation 
down requirements (whereas in the study solar is not allowed to be 
curtailed to provide regulation down reserve), assuming the policy 

Table 3 
Annual simulation results on SoCo system with high solar.  

Methods Det. Static P3 (90%) P3 (99%) P4 (90%) P4 (99%) Hybrid 

Annual fuel cost w/o penalties ($) 2,493 M 2,496 M 2,522 M 2,631 M 2,594 M 2,635 M 2,632 M  
(↑ 0.1%) (↑ 1.1%) (↑ 5.5%) (↑ 4.1%) (↑ 5.7%) (↑ 5.6%) 

Annual total cost w/ penalties ($) 2,610 M 2,614 M 2,635 M 2,635 M 2,628 M 2,639 M 2,637 M  
(↑ 0.16%) (↑ 0.93%) (↑ 0.96%) (↑ 0.67%) (↑ 1.1%) (↑ 1.01%) 

Total reserve violation (MWh) 15,406 14,535 14,415 3,959 8,411 3,844 3,854  
(↓ 5.7%) (↓ 6.4%) (↓ 74.3%) (↓ 45.4%) (↓ 75%) (↓ 75%) 

Balance violation (MWh) 19,893 20,383 19,269 0 4,745 0 0  
(↑ 2.5%) (↓ 3.1%) (↓ 100%) (↓ 76.1%) (↓ 100%) (↓ 100%)  

Table 4 
Annual average dynamic reserve requirements (MW) under different robustness levels for medium and high solar cases.  

Methods Medium solar (7 GW) High solar (20 GW) 

75% 90% 95% 99% 75% 90% 95% 99% 

P2 1,660 1,676 1,684 1,693 3,447 3,562 3,617 3,674 
P3 1,326 1,431 1,562 1,982 2,258 3,197 3,932 5,066 
P4 1,374 1,531 1,764 2,236 2,716 4,262 5,227 5,292  

Fig. 6. Sensitivity study results for medium solar case: (a) operating reserve violation in different methods, (b) total reserve violation in different methods, (c) fuel 
cost of the system in different methods, and (d) total operating cost of the system in different methods. 
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allows this. It is still useful to examine, but not as important as the up
wards reserve violations. 

For the operating reserve violations it can be seen that in the 
deterministic case, of the many hours with violations, there are 4 h 
where the operation reserve shortage is greater than 300 MW, including 
hour 18 on Aug. 22th, hour 18 on Sep. 7th, hour 18 on Sep. 8th and hour 
11 on Nov. 6th. As shown in Table 2, the reserve violations are reduced 
significantly by using probabilistic methods. Compared to the deter
ministic method, the P3 and P4 methods with 99% robustness attain a 
reduction of 74% and 94% respectively of the total reserve violations, 
with a modest increase in the total operating cost (increasing 0.13% and 
0.3% respectively). The static reserve method results in similar total cost 
as the deterministic method, but 8% higher reserve violations. The 
hybrid method is 0.3% more expensive and reduces the reserve viola
tions by 94% compared to the deterministic method, showing that it can 
attain a good tradeoff between the cost and the reduction of violations. 

Depending on the risk preference of the operators, and the costs of 
making updates closer to real time, the hybrid method may be preferred, 
or a method that improves reliability even further. 

In the 20 GW solar (high solar) case, a total of 19,893 MWh of load 
balance violation obtained when using the deterministic method to set 
the reserve requirements. The static method results in slightly higher 
quantity of power balance violations compared to the deterministic 
method, but the P3 and P4 methods result in significantly lower quantity 
of power balance violations than the deterministic method. In addition, 
the quantity of balance violation goes to zero in P3 and P4 with a 99% 
robustness, at a cost of $140 million. The annual total cost (including the 
penalty cost of violations) of the P3 (99%) and P4 (99%) is 0.96% and 
1.1% higher than the deterministic method respectively. 

Fig. 7. Scatter plot between change of total reserve violation and the change of 
total cost for medium solar case. 

Fig. 8. Sensitivity study results for high solar case: (a) balance violation in different methods, (b) total reserve violation in different methods, (c) fuel cost of the 
system in different methods, and (d) total operating cost of the system in different methods. 

Fig. 9. Scatter plot between change of total reserve violation and the change of 
total cost for high solar case. 
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5.5. Sensitivity studies on probabilistic reserve methods 

System operators can select different robustness levels for methods 
P2, P3 and P4, based on their risk tolerance. A challenge for operators is 
how to select the proper probabilistic method and their corresponding 
robustness levels for their grid operations. Conducting sensitivity studies 
sheds light on this challenge. Table 4 shows the annual average dynamic 
reserve requirements under different robustness levels for 7GW and 20 
GW solar cases. Several observations can be made from these two tables: 
(1) The dynamic reserve requirements in the 20 GW solar case are higher 
than those in the 7 GW solar case, as expected due to high uncertainty 
with more solar power; (2) In P2 method, the average reserve re
quirements slightly increase with the increase of robustness. The dif
ference of the values is relatively small, mainly due to the way the 
extreme scenarios are used with the recursive method described earlier – 
picking more extreme scenarios with very high or very low production 

may result in lower reserves as this scenario may actually be easier to 
forecast for than those that are less extreme and therefore may exhibit 
more variability; (3) In P3 and P4 methods, the average reserve re
quirements increase significantly with the increase of robustness, as 
would be expected for these anticipative methods where higher 
robustness results in higher levels of uncertainty being captured; (4) The 
P4 method sees higher average reserve requirements than the P3 method 
under each robustness level, which may not be generically true but has 
been observed in this project. 

Fig. 6 shows the sensitivity study results for the 7 GW solar cases with 
different probabilistic methods and robustness levels. Fig. 6(a) shows 
the violations of operating reserves in one year in all cases. The oper
ating reserve violation decreases significantly for P3 and P4 methods 
when the robustness is close to 0.99. Fig. 6(b) shows the total violations 
of reserves (i.e., sum of operating and regulation reserves) in all cases. 
For the P3 and P4 methods, the total reserve violations drop slowly 

Fig. A1. Improved forecast accuracy (decreased forecast error) between two iterations of the forecast methods (old v.s. new) as measured by the CRPS as a function 
of the forecast horizon. 

Fig. A2. Forecast reliability between the old v.s. new methods, where the diagonal solid line indicates perfect reliability.  
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when the robustness level is lower than or equal to 0.95, and then 
quickly from 0.95 to 0.99. For the P2 method, the total reserve violation 
slightly increases when the robustness changes from 0.75 to 0.9 (due to 
the increase in regulation down reserve violations) and then drops when 
the robustness changes from 0.9 to 0.99. Fig. 6(c) shows the annual fuel 
costs in all cases. The fuel costs are very close for all the robustness levels 
in P2 method. In P3 and P4 methods, the fuel costs are similar when then 
robustness is lower than or equal to 0.95 but increase significantly when 
the robustness changes from 0.95 to 0.99 (although the absolute value of 
the change is large, the percentage value is only about 0.3–0.5%). Fig. 6 
(d) shows the annual total cost (fuel cost plus penalties for violations) in 
all cases. For P2 method, the curve decreases slowly, similar to reserve 
violations; for P3 and P4 methods, the curves decrease first and then 
increases. Some observations can be made from these results: (1) for the 
P2 method, it is recommended to use a high robustness value (e.g., 
0.99), which leads to lower violations and costs than other robustness 
values (e.g., 0.75, 0.9 and 0.95); (2) the performances of P3 and P4 
methods are similar, thus the operator can select either one in the op
erations; (3) for P3 and P4 methods, it is recommended to choose 0.90 
and 0.95 robustness in normal situations (e.g., demand is not high and 
renewables output is normal) and 0.99 robustness in higher stress situ
ations (e.g., close to peak demand and/or low renewable output). 

To further illustrate the value of using probabilistic forecast, a X-Y 
scatter plot for the changes of costs versus the changes of reserve vio
lations is used, where the changes are the difference between the 
probabilistic case and the deterministic case, as shown in Fig. 7. For 
example, the point P4_0.99 refers to the Prediction Interval (P4) method 
with 0.99 robustness, and its coordinate (x = − 4360 MWh, y= $ 9.6 
mil.) means that the total reserve violation is 4,360 MWh lower than the 
deterministic (D) case and the total cost is $ 9.6 million higher. The 
vertical axis is the change of annual total cost. The dots in the figure are 
divided into two areas based on their locations on the plane: (1) dots in 
Area 1 see lower total cost and lower reserve violations; (2) dots in Area 
2 see higher cost and significantly lower reserve violations. This means 
that if one wants to get a significant reduction in violations, the P3_0.99 
or P4_0.99 methods are observed to be more useful; for lower re
ductions, other methods are more useful given they do not cost as much. 
As such, one may want to use the more robust levels during periods of 
higher system stress, e.g., when supply–demand balance is expected to 
be tight or when large variability is predicted. In addition, if other lower 
robustness values are used (e.g., ≤ 0.5), the corresponding dots may fall 
into the area where both higher cost and higher violations are seen. 
Hence, they are not recommended to use. 

Another interesting metric to be evaluated is the per unit cost/benefit 
of reducing the reserve violations. The coordinate of dot P4_0.99 in 
Fig. 7 is (− 4360, 9.6), which means that $9.6 million cost increase is 
seen for a reduction of 4,360 MWh of reserve violations in P4 with 0.99 
robustness. Hence, the per unit cost is $2,199 for a reduction of 1 MW 
reserve violation. Similarly, the coordinate of dot P3_0.99 is (− 4046, 4), 
so the per unit cost is $987 for the reduction of 1 MW reserve violation. 

The same type of analysis is performed for the high solar case. 
Different from the medium solar case, it is observed a significant number 
of power balance violations in the high solar base case. This indicates 
that the operating conditions of the high solar case could stress the 
system more heavily. Fig. 8 shows the sensitivity study results of the 
high solar cases. Fig. 8(a) shows the annual balance violations for each 
method under different robustness levels. The P2 method only has a 
marginal impact on the power balance violations (hence the curve is 
relatively “flat”) as the robustness level varies. The reason is that when 
the robustness increases, the average reserve requirement in P2 is 
similar (see Table 4). However, to reduce the balance violation in RT, 
more reserves should be held in DA, which cannot be achieved by using 
P2, it is therefore observed that P3 and P4 perform better for the high 
solar case. For P3 and P4 methods, the power balance violations 
decrease as the robustness levels increase. Note that there are no power 
balance violations for P3_0.99, P4_0.95 and P4_0.99. Fig. 8(b) shows the 

results of total reserve violations. With the increase of the robustness 
level, the values on the P2 curve decreases, but the values on P3 and P4 
curves drop relatively fast. Fig. 8(c) and (d) shows the results of the 
change of fuel cost and total cost respectively. Again, the curves for P2 
methods are relatively flat, but the curves for P3 and P4 methods in
crease with the increase of the robustness level. The below observations 
can be made from the analyses: (1) the P2 method only slightly reduces 
the violations; (2) the P3 and P4 methods can help reduce both the 
balance violations and reserve violations, but this comes with higher 
costs. Thus, it is necessary to make a tradeoff between the reduction of 
the violations and the increase of costs. 

Fig. 9 shows the X-Y scatter plots for the changes of total cost (fuel 
cost plus penalties) versus the changes of total violation (balance 
violation plus reserve violation) in the high solar case. There is an outlier 
in the figure, i.e., the dot for P3 method with 0.9 robustness (P3_0.90) 
where the total violation only has a small decrease, but the overall cost 
increases significantly. Hence, the P3 method with 90% robustness is not 
recommended to use for the high solar (20 GW) case. By eliminating this 
point, the other points in the figure line up very well on the curve y =
− 0.0009 × –1.9608, which is obtained by a linear regression analysis. 
The slope of the curve is − 0.0009, which means that in order to reduce 1 
MWh of total violations, the cost will increase $ 900 (or 0.0009 M$) on 
average. This curve will help the system operators to make tradeoffs 
between the reduction on the violations and the increase on the costs 
while selecting the probabilistic methods. 

6. Conclusions 

This work proposes a practical approach as well as the modeling 
framework to quantify the value of probabilistic solar forecasting for 
grid operations by transforming the probabilistic information into dy
namic reserve requirements. Simulation results from the Southern 
company system show that using dynamic reserves (both deterministic 
and probabilistic methods) are beneficial to the system (in terms of cost 
and reduced number of power balance and reserve violations) compared 
to using static reserve requirements. In addition, the values brought by 
probabilistic methods are higher than that brought by deterministic 
methods, indicated by lower balance and reserve violations, at lower or 
similar operating costs. In general, the benefits brought by the adoption 
of dynamic reserves are significant (especially in terms of power balance 
violations reduction) in the high solar penetration case. To best utilize 
the power of probabilistic solar forecast, system operators need to select 
a proper probabilistic dynamic reserve determination method and the 
associated robustness level. The best strategies identified in this article 
are different in the medium and high solar cases. In the medium solar 
cases, the performances of the anticipative methods (bounds of extreme 
scenarios and prediction interval) are similar, thus the system operator 
could select either one in the operation. Moderate robustness (e.g., 0.9 
and 0.95) typically performs well, but in more extreme situations (high 
demand, high solar variability expected), high robustness (e.g., 0.99) 
may provide more values. In the high solar cases, the recursive method 
only slightly reduces the violations, and the anticipative methods appear 
to help reduce both the balance violations and reserve violations, at 
higher costs. Thus, the system operator would need to make a tradeoff 
between the reduction of the violations and the increase of costs asso
ciated with increasing robustness. 

Future work may include a comparison of the proposed dynamic 
reserve approach with the stochastic unit commitment approach for 
benchmarking the benefits of using probabilistic solar forecasting. 
Additional future work will examine the value of probabilistic solar 
power ramp forecasting for grid operations. 
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Appendix A:. Performance of the probabilistic solar forecasting improvement 

We developed a gradient-boosted decision tree methods to improve the resolution and reliability of probabilistic solar forecasts. This involved 
using the decision tree algorithm to determine the probability of generation exceeding a series of fixed fractions of maximum generation, resulting in a 
set of decreasing probabilities. Taking the resulting vectors of probabilities and generation values, we interpolated in probability of exceedance (POE) 
to find the generation values corresponding to fixed POE. This methodology (i.e., the new method) resulted in improved reliability of probabilistic 
forecasts compared with our previous technique, which involved quantile regression based on a history of determinist forecasts (i.e., the old method). 
A common metric for assessing probabilistic forecast accuracy is the continuous ranked probability score (CRPS) [41]. CRPS compares the probability 
distribution of the forecast (as a cumulative distribution function - CDF) against the observation, where lower CRPS values indicate more accurate 
forecasts and a CRPS of zero indicates a perfect forecast. Fig. A.1 shows the decrease in CRPS (increased accuracy) from the improved methods as a 
function of forecast horizon, with the largest differences in the shorter horizons (~4 days ahead or less). 

While CRPS are singular values to quantify forecast performance, it can also be helpful to analyze forecast reliability, a.k.a, calibration. Reliability 
diagrams provided a visual method to validate forecast accuracy at different probabilities. For example, it can justify if the forecast predicts events that 
occur 70% of the time with 70% probability. Fig. A.2 compares the reliability of two iterations of the old and new methods, showing that the new 
method has higher reliability (better agreement with the perfect reliability line shown by the dashed solid line). This is the ideal case, i.e., improved 
probabilistic forecasts should have both low overall error (as measured by, e.g., Ignorance Score or CRPS) and be well calibrated. 

Appendix B:. Dynamic reserve determination based on probabilistic forecasts 

There are different ways to determine dynamic reserve requirements based on probabilistic forecasting. If historical data is available, statistical 
analysis can be conducted on it. For example, one can calculate the exact reserve requirements, which are defined as the differences between actual 
and forecasted quantities, on days with similar operating conditions, as shown in the following equation: 

εt = PF
t − PA

t , {t = 1, 2, ⋯, T} ∈ G (A1) 

where G is the group of data sets (e.g., in days with similar weather conditions), T is the number of historical samples in group G, PA
t is actual 

generation at t, PF
t is forecasted generation at t, εt is the exact reserve requirement at t. If εt ≥ 0, upward reserve will be needed. If εt ≤ 0, downward 

reserve will be needed. 
Then, the range between the maximum and minimum values of the forecast PF

t is equally divided into B bins with values at the beginning of each 
bin to be: 

vb = PF,min +
b
(
PF,max − PF,min

)

B
,∀b = 1, 2, ⋯, B (A2) 

Note that the value of B should be chosen properly to avoid under-fitting (B is too small) and over-fitting (B is too large). All the t samples of εt are 
firstly classified into two categories: upward reserve requirements εup

t if εt ≥ 0, and downward reserve requirements εdn
t if εt < 0. Then, each εup

t and εdn
t 

is allocated into the bins, i.e., it falls into the bth bin if vb− 1 ≤ PF
t ≤ vb. In each bin, the samples are ordered from the smallest value to the largest value. 

If there are n samples in the bth bin, quantile analysis can be conducted based on the desired confidence interval q ∈ [0,1]. When all these are done, the 
upward and downward reserve requirements for a given forecast xt under desired confidence interval q can be determined with the following 
equation: 

rup/dn
t |xt

= q − quantiles of the samples in the bth bin, ifvb− 1 ≤ xt ≤ vb. (A3) 

where rup
t and rdn

t is the upward and downward reserve requirement at time t respectively. 
Note that Eq. (A3) is based on deterministic forecast xt. In order to utilize probabilistic forecast, one needs to transfer it into probabilistic scenarios, 

as shown in Fig. 4. For each scenarios s, the reserve requirement rup
t,s and rdn

t,s at time t can be calculated with Eq. (A3). Then, the expected reserve 
requirements are the weighted sum of rup

t,s and rdn
t,s for all the scenarios: 

rup
t =

∑

s∈S
(ωs • rup

t,s), t = 1, 2, ⋯, T (A4)  

rdn
t =

∑

s∈S
(ωs • rdn

t,s), t = 1, 2, ⋯, T (A5) 

where S is the total number of scenarios, and ωs is the probability of scenario s. Eqs. (A4) and (A5) are the formulations to calculate dynamic 
reserves with the “all scenarios method (P1)”. 
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Sometimes the system operators may want to obtain the reserve requirements based on the extreme scenarios, rather than the full set of all 
scenarios. Assume Sup and Sdn to be the worst upward and downward subsets of scenarios. The corresponding reserve requirements can be calculated 
with (A4) and (A5) by replacing the full set S with Sup and Sdn respectively. This will derive the dynamic reserves with the “extreme scenarios 
method (P2)”. 

On the other hand, the reserve requirements can be obtained purely from the probabilistic forecasts, without using the historical data information. 
The corresponding methods are called anticipative methods. The expected worst upward and downward forecasts in Sup and Sdn are shown in the 
following equations: 

PF,up
t =

1
∑

s∈Sup (ws)

∑

s∈Sup

(ωs • PF
t,s), t = 1, 2, ⋯, T (A6)  

PF,dn
t =

1
∑

s∈Sdn (ws)

∑

s∈Sdn

(ωs • PF
t,s), t = 1, 2, ⋯, T (A7) 

where PF,up
t and PF,dn

t is expected worst upward and downward forecasts in Sup and Sdn respectively; PF
t,s is the forecast at t in scenario s. Then, the 

upward and downward reserve requirements can be calculated as the difference between the expected worst upward and downward forecasts with 
respect to the central forecast: 

rup
t = PF,cf

t − PF,dn
t , t = 1, 2, ⋯, T (A8)  

rdn
t = PF,up

t − PF,cf
t , t = 1, 2, ⋯, T (A9) 

where PF,cf
t is the central forecast at time t. Eqs. (A8) and (A9) are the formulations to calculate dynamic reserves with the “bounds of 

extreme scenarios method (P3)”. 
Another anticipative method is to calculate the reserve requirements based on the CDF (F( • )) of the forecasts. For a desired prediction interval α 

(e.g., α = 0.9), the upward and downward reserve requirements are calculated in the following equations: 

rup
t = F− 1(0.5) − F− 1(α̃), t = 1, 2, ⋯, T (A10)  

rdn
t = −

[
F− 1(1 − α̃) − F− 1(0.5)

]
, t = 1, 2, ⋯, T (A11) 

where α̃ = (1 − α)/2 and F− 1( • ) is the inverse CDF. Eqs. (A10) and (A11) are the formulations to calculate dynamic reserves with the 
“prediction interval method (P4)”. 
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