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A B S T R A C T   

Highway fast-charging (HFC) stations for electric vehicles (EVs) are necessary to address range anxiety concerns 
and thus to support economy-wide decarbonization goals. The characteristics of HFC electricity demand – its 
relative inflexibility, high power requirements, and spatial concentration – have the potential to adversely 
impact grid operations as HFC infrastructure expands. Here, we investigate the impacts of scaled-up HFC 
infrastructure using an operations model of the 2033 Texas power grid with uniquely high spatial and temporal 
resolution. In the reference EV penetration case corresponding to 3 million passenger EVs on the road, we find 
that grid-HFC interactions increase system annual operational costs by 8%, or nearly $2 per MWh of load served. 
Greater impacts are observed for higher EV penetration cases. The high spatial resolution of the analysis reveals 
that the majority of increased costs can be attributed to transmission congestion on feeder lines serving a mi-
nority of HFC stations. Four-hour battery energy storage is shown to be more effective than demand flexibility as 
mitigation, due to the long duration of peak charging demand anticipated at HFC stations. Transmission network 
upgrades can also effectively mitigate grid-HFC interactions. Choosing the most effective mitigation strategy for 
each station requires a tailored approach.   

1. Introduction 

The electrification of transportation is key to economy-wide decar-
bonization. Under 2016 grid conditions, an electric vehicle (EV) would 
be expected to contribute significantly less lifetime greenhouse gases 
than an internal combustion vehicle in about 75% of counties in the USA 
(Wu et al., 2019), and estimates by the IEA (2019), BNEF (2019), and 
OPEC (2019) indicate that sales of these cleaner vehicles will comprise 
at least 15%–30% of global passenger vehicle sales by 2030. There are 
challenges to achieving these estimates. In addition to driving down 
costs, suppliers must invest in more charging infrastructure to alleviate 
the “range anxiety” of potential EV owners (MIT, 2019). This infra-
structure will lead to significantly increased electricity demand: a recent 
US-wide study, for example, projects that the electrification of U.S. 
transportation could increase 2050 demand by 800–1700 TWh/year, or 
21–44% of the entire US electricity demand in 2016 (Mai et al., 2018). 
Meeting this new electricity demand in aggregate can be posed as a 
question of traditional generation capacity expansion, but a comple-
mentary challenge lies in accommodating the spatio-temporal patterns 

of electricity demand from EV charging. While the operational impacts 
on distribution networks from EV charging are well-studied 
(Arias-Londoño et al. (2020) and Deb et al. (2017) offer reviews), 
comparatively little attention has been paid to impacts on the 
transmission-scale grid, and almost none to the impacts caused by 
charging stations1 located along inter-city highways. These chargers, 
termed highway fast-chargers (HFCs) in this study, comprised roughly 
20% of newly opened public chargers in the U.S. in 2019 (Brown et al., 
2020). They represent extremely high-power and largely inflexible 
charging demands, since drivers mid-journey prioritize low wait times 
and fast charging, and thus they are potentially disruptive to power grid 
operations (Burnham et al., 2017). Absent contemplation of these topics, 
the power grid may not evolve to accommodate sufficient EV charging 
infrastructure, thereby slowing the adoption of EVs and failing to serve 
society’s decarbonization goals. This paper investigates the grid opera-
tional impacts of HFCs in the context of the bulk electricity system in 
Texas and potential mitigation strategies to address these impacts. 

The problem of managing EV charging load to minimize impacts on 
the power grid has been studied at the system-level. By assuming a 
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1 Various terminology is used to characterize EV charging infrastructure. We use “chargers” to refer to the individual connections between EVs and supply 
equipment, analogous to the pumps at gasoline refueling stations. We use “stations” to refer to collections of these chargers. 
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degree of flexibility in EV charging demand, Xu et al. (2018) and others 
have shown that coordinated charging strategies can reduce the aggre-
gate coincident power demand from charging, thereby reducing strain 
on the grid. Without this flexibility, EV charging demand becomes more 
problematic: Muratori, 2018 shows how uncoordinated residential 
charging can overwhelm distribution infrastructure at the neighborhood 
level. HFC demand could pose a similar problem at a larger scale due to 
its relative inflexibility, high-power requirements, and spatial concen-
tration, all of which make it more challenging to integrate with the grid 
(Burnham et al., 2017). These potential impacts can be expected to scale 
as well, since as EV penetration increases so too will the size of the 
supporting HFC stations. Taking the Tesla Supercharging network as an 
example, the peak capacity of each Supercharging station has been 
growing over time, with Tesla’s largest Supercharger station at present 
with a peak capacity of 14 MW2 (Github, 2020). Even at more modest 
levels of current deployment, the operational challenges that HFC sta-
tions may pose have already surfaced. During the Thanksgiving holiday 
in late November 2019, for example, the Tesla Supercharger stations 
midway between San Francisco and Los Angeles experienced congestion 
that was belatedly alleviated by dispatching battery storage mounted on 
trucks to these locations (Conroy, 2020). 

Despite their potential magnitude, the operational impacts of HFCs 
on the power grid have not been fully studied in the literature. This is in 
part because such an assessment requires spatially and temporally 
resolved representations of both the charging demand and of the power 
grid network, generation, and load, as well as an appropriately realistic 
power system simulator. This level of detail has so far been demon-
strated for small-scale systems consisting of one-to-several charging 
stations, for which Ma (2019) offers a review, but not for full-scale grids. 
Four recent studies have come close to the approach needed for this 
problem, but they simplify the transmission networks using either a 
copper-plate or zonal approximation, approaches that are not adequate 
to simulate the true spatial characteristics of HFC stations. Wolinetz 
et al. (2018) develop a bottom-up EV charging model coupled to a power 
system operations model that includes hourly generation dispatch, but 
they use a copper-plate approximation for the transmission network and 
derive system prices from levelized costs of electricity (LCOE) for grid 
generation. Heuberger et al. (2020) model the UK grid topology as a 
system of 29 aggregate nodes and use a commitment and dispatch 
simulator (ESONE) over representative periods to approximate annual 
grid operations. Moreover, there is not explicit modeling of fast charging 
demand. Szinai et al. (2020) use a coupled vehicle traffic simulation 
model (BEAM) and a grid simulator (PLEXOS) with a zonal represen-
tation (25 zones are modeled) of the U.S. Western Interconnect. While 
they do specifically model fast-charging infrastructure, it is represented 
coarsely at the zonal level due to the model structure. Similarly, Jenn 
et al. (2020) analyzed the effects of fast-charging infrastructure in the 
2030 US power system using a temporally detailed grid simulator 
(GOOD), but the model’s spatial resolution was kept at the regional 
level. Furthermore, they focused on the environmental effects of 
fast-charging, and not the operational costs sustained by the grid. 

This paper establishes the importance of detailed spatial resolution 
to extend the above line of research. We explicitly analyze the opera-
tional impacts of locationally resolved HFC stations in the context of the 
grid operated by the Electric Reliability Council of Texas (ERCOT), 
which serves the majority of electrical load in Texas. We apply a highly 
detailed production cost model (PCM) with over 3500 buses and over 
9000 transmission lines spanning the ERCOT grid. We use the PCM to 
evaluate grid dispatch at an hourly resolution for a full year under 
various scenarios of HFC demand and grid conditions in 2033. The 
detailed modeling resolution quantifies costs associated with EV adop-
tion that less detailed charger-grid interaction studies fail to capture. 
Additionally, we investigate mitigation strategies to minimize the cost 

impacts of HFC operation, including demand flexibility, co-located 
battery storage, and transmission reinforcement. Notably, we find that 
demand flexibility – even if it were practicable for HFCs at modest levels 
(+/− 1-h flexibility) – is largely ineffective due to the long periods of 
grid congestion resulting from HFC-grid interactions. Battery storage 
with 4-h duration represent a more practical and cost-effective strategy 
for mitigating the grid operational impacts for HFC. 

The rest of the paper is outlined as follows. The next section describes 
the overall methodology including an overview of the PCM used, data to 
characterize grid operations, and the definition of the EV demand sce-
narios. This is followed by a discussion of the main grid operation out-
comes resulting from serving HFC demand and the impacts of 
alternative mitigation strategies. We conclude by discussing the policy 
implications of the findings and areas of future work. 

2. Methods 

2.1. Overview and data statement 

Fig. 1 summarizes the overall approach of the study. We evaluate the 
grid operational impacts of HFC deployments through a case study of the 
ERCOT power grid in 2033, for which projections on generation, base-
line electricity demand, transmission reinforcements, and EV penetra-
tion in the transport sector are available from ERCOT’s 2018 Long-Term 
System Assessment Report (LTSA) (ERCOT, 2018). We assess the overall 
grid impacts of HFC station operation accompanying rising EV pene-
tration by comparing the outputs of the PCM for 2033 with and without 
(“Concentrated Case” and “Base Case”, respectively, in Fig. 1) HFC de-
mand. To isolate the locational effects of fast-charging on the power 
system, we evaluate another case (“Distributed Case” in Fig. 1) that 
distributes HFC demand within each ERCOT weather zone across all the 
load buses within that zone, in proportion to their original load.3 

Through comparison of these three Cases, we decompose the total grid 
impacts of HFCs into “Zonal Effects” (difference between the Distributed 
Case and the Base Case) and “Local Effects” (difference between the 
Concentrated Case and the Base Case). The latter are intended to capture 
mainly the grid impacts resulting from the spatial concentration of 
power demand, while the former to capture mainly the grid impacts 
from an increase in aggregate electricity demand. This decomposition is 
a main contribution of this study, enabled by the spatial resolution of our 
model, and it isolates the grid effects of the spatial concentration of HFC 
power demand. 

Our choice of the ERCOT system to study EV charging impacts is 
informed by several factors: (1) it already contains developed EV 
charging infrastructure, with new EV registrations 4th highest in the 
country and comprising 4% of the U.S. total in 2018 (Autoalliance, 
2020; DOE, 2020); (2) it is sufficiently large to observe large-scale ef-
fects and a variety of local situations, with over 30 million residents (US 
Census, 2020) and a peak summer demand of about 75 GW (ERCOT, 
2020); (3) its power system is electrically and politically isolated from 
neighboring regions, making its analysis simple without the need to 
consider import/exports from other states; and (4) the necessary data to 
conduct this study are available publicly. Finally, our choice of the year 
2033 for the simulations is a direct consequence of our choice of the 
ERCOT system: the 2018 ERCOT LTSA chooses 2033 for its generation, 
EV, and transmission forecasts, and so do we. 

The data, a data dictionary, and analysis scripts used in this study are 
freely available on Github at https://github.com/mowryand/HFC_grid_i 
mpacts, and hosted data referred to in this paper will be cited as (Github, 
2020). Academic licenses to the PCM software we used are available at 
http://www.psopt.com/contact/. 

2 The Firebaugh, CA station. 

3 Refer to the data dictionary on Github (2020) for a description of the 
weather zones. 
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2.2. Power network data 

The modeled ERCOT network includes all transmission, generation, 
and load operated by ERCOT that interconnects at or above 69 kV (the 
“wholesale” or “transmission” level). The topological data that identifies 
the interconnections between generation buses, load buses, and power 
lines, as well as the physical parameters such as impedance that are 
necessary to create an electrical model are derived from the network 
model that ERCOT released for its June 2018 monthly Congestion 
Revenue Rights (CRR) auction (Github, 2020). This topology contains 
over 3500 load buses with a median power rating of 7.5 MW, over 9000 
transmission lines that range from 69 kV to 345 kV, and close to 750 
unique generation units (See Fig. 2, left side.). We construct hourly load 
schedules at each of the load buses by distributing historical weather 
zone-level hourly load data from 2017 (Github, 2020) pro-rata accord-
ing to each load bus’ power rating in the CRR network representation. 
We assemble generation dispatch characteristics, namely variable 
operation costs, ramp rates, and min/max power outputs, from the S&P 
Global SNL power plant database (Github, 2020). Daily natural gas 
prices at Henry Hub from 2017 were obtained from the US Energy In-
formation Administration (Github, 2020). Uranium, coal, and biomass 
prices are set at constant levels that reflect average levels in 2017 and 
that appropriately locate the respective generation in the total ERCOT 
supply stack (Github, 2020). Wind and solar availability are based on 
zonal, hourly resource availability for 2013, the latest year of data 
available from the National Solar Radiation Database (Github, 2020). 

We extrapolate the above historically-derived grid modeling pa-
rameters to 2033 based on the “Current Trends” scenario of the LTSA 
(ERCOT, 2018). For generation, the changes include 3 GW of coal re-
tirements, 3 GW of natural gas (combined cycle) additions, and 18 GW of 
wind and solar additions, most of these in the western areas of the state. 
To effect these changes, we modify the maximum output of existing 
generation of the same technology and in the same weather zone. For 
example, to add 9.2 GW of solar additions in the “Far West” weather 
zone we increase nameplate capacity of existing solar facilities in the Far 
West by 9.2 GW. Natural gas prices preserve their historical intra-annual 
variability but are mean-corrected to the LTSA 2033 assumption of 
$4.50/MMBtu. Other fuel prices follow the EIA’s long-term projections, 

corresponding to $1.96/MMBtu for coal and $0.70/MMBtu for uranium 
(EIA, 2020a). 

For load, we extrapolate monthly system load and peak-demand 
forecasts from ERCOT’s Long-Term Load Forecast (Github, 2020), 
available through 2028, using twelve monthly regression models. We 
then scaled the historical 2017 hourly load data to fit the predicted 2033 
load and peak power demand by month and zone. This approach is 
validated by comparison of our predictions to the LTSA aggregate 
numbers: our model predicts an annual peak power demand of 96.6 GW 
and a total annual energy demand of 544 TWh in 2033, compared to the 
LTSA’s predicted 94.5 GW and 530 TWh. These numbers are exclusive of 
HFC loading. The combination of load and generation changes in the 
LTSA base scenario predicts a reserve margin of less than 5%, which is 
unrealistically low, and thus we increase natural gas peaking capacity to 
attain a 10% reserve margin, which is consistent with recent trends for 
ERCOT (Brattle, 2019a). 

For transmission, the LTSA identifies several transmission corridors 
that will need reinforcement over the next decade, most of which serve 
to export power from the increasingly generation-rich west of the state 
to the load centers in the east of the state. Without specific identification 
of these upgrade projects to apply to our model, we used a diagnostic 
simulation of our modeled Base Case (without HFCs) to identify trans-
mission lines with violated thermal operation limits, and we then 
upgraded the affected lines as necessary to prevent these violations. As a 
result, there are no violations in the Base Case. Although this approach 
may result in an overly reinforced “gold-plated” network, that would 
only understate the magnitude of our results regarding grid operational 
impacts of EV penetration. 

2.3. EV charging network data 

The modeled EV charging network is composed both of a distributed 
residential charging network and an HFC network. The distributed 
network is not a special focus of this study and is modeled in relatively 
low detail: aggregate residential charging load as reported by ERCOT 
(ERCOT, 2018) is distributed among all load buses on the power 
network in the same pro-rata fashion as other system load, and this 
aggregate load is shaped to hourly demand according to the median 

Fig. 1. Schematic representation of scenario modeling approach. The impacts of HFCs can be decomposed into Zonal Effects and Local Effects. These effects are 
separated by analyzing an intermediate “Distributed Case”, which spreads fast-charging demand to all electrical nodes in a zone, as well as the “Base Case” and 
“Concentrated Case”, which realistically locates charging demand into few locations along highway corridors. Note: FC = “Fast Charger”. 
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demand profile as per data available from The EV Project (INL, 2013). 
(See Fig. 3, left side.) The HFC network is the focus of this study and is 
modeled in more detail: the location of each station is based on the Tesla 
Supercharger network as it is operating or under construction in Texas in 
2020. There are 48 such Supercharger stations, representing about 425 
individual fast-chargers and 65 MW of total rated power capacity 
(Github, 2020). We choose not to incorporate infrastructure from other 
HFC developers because the Tesla network is well represented along 
major highways in Texas and because HFC counts and distributions will 
be manipulated in our analysis as sensitivities. Each modeled HFC is 
connected directly to the transmission system via the nearest load bus. 
The HFCs and their grid connections are shown in the right panel of 
Fig. 2. 

Demand profiles for the HFCs are also derived from The EV Project 
data (INL, 2013). We applied a sampling algorithm to generate realistic 
demand variation, fitting normal distributions to the quantile data 
available from INL for each 15-min interval, and for each hour and each 
charger sampling from the appropriate distribution (top right of Fig. 3). 
The individual charger demand profiles are summed at each station to 
create a station-level demand to be served by the power grid (bottom 
right of Fig. 3). The aggregate demand from an HFC station in a given 
hour is thus an averaged view of demand for that hour across an entire 
year: busy travel days and slow travel days cannot be modeled with this 
methodology, and so peak stresses on the grid are underestimated. These 
demand profiles are also static in the simulations: both residential and 
HFC demand are inflexible in the zero-mitigation scenarios. This is an 
important assumed feature of highway charging behavior, although we 
explore price-responsive demand as one potential mitigation strategy. 

We extrapolate the HFC network to 2033 by rescaling the sizes of 
existing HFC stations.4 The LTSA projects 3 million passenger EVs on 
Texas roads by 2033 with a peak charging demand5 of 6 GW. Using 
empirical data of many countries’ currently deployed EV charging net-
works (IEA, 2019), we estimate linear models that relate (1) the number 
of chargers (slow and fast) to the number of passenger EVs on the road, 
and (2) the number of fast-chargers to the number of all chargers. With 
both relationships, we convert the 3 million forecasted EVs for 2033 to 
34,000 fast-chargers and 300,000 slow-chargers and assume standard 
power ratings of chargers: 150 kW for a fast-charger and 20 kW for a 
slow-charger (Lee and Clark, 2018). Applying the median INL utilization 
curves (Fig. 3) to the slow-chargers recovers the LTSA’s 6 GW peak 
demand prediction, with a mean hourly value of 3 GW. This incremental 
slow-charging load is distributed through our modeled power system the 
same way as the initial slow-charging load: pro-rata according to indi-
vidual load-bus power ratings. Sampling from the INL curves to deter-
mine HFC load predicts an incremental peak demand of 1.6 GW and a 
mean hourly demand of 700 MW from a total nameplate capacity of 6 
GW. The incremental HFC load is distributed pro-rata among existing 
Tesla Supercharging sites according to present charger counts. 

During our analysis we define the above configuration as the “LTSA 
EV Penetration” scenario. We also evaluate lower and higher penetra-
tion configurations based on 50%, 75%, 125%, and 150% of the fore-
casted number of EVs on the road, respectively, as the LTSA forecasts. 

2.4. Production cost modeling (PCM) 

To simulate the operations of the power grid we use a commercial 

Fig. 2. Modeled system topologies. Left: Modeled power generation and transmission network. Sizes of circles and thicknesses of lines represent the nameplate 
capacities and power transfer limits of generators and power lines, respectively. To note are the large concentrations of solar resource in the west, and of wind 
resource in the north. Right: Modeled location and peak power demand of HFC stations (black diamonds) on the highways (blue lines), along with the feeder lines 
(black lines) that interconnect them to the nearest transmission load bus (gray rings). The red circled stations are especially impactful on the power system and are 
referenced in the results. Slow-charging and residential infrastructure are also modeled but omitted from the figure. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web version of this article.) 

4 Although it is certain that more charging locations will be developed by 
2033, they will probably be clustered like the gas stations that exist along 
highways. Since clusters will connect to the same point on the transmission 
network, the impact on the power system of few very large stations as we model 
would approximate that from a cluster of many smaller stations. See Section 4.1 
for more discussion of proactive HFC siting as a mitigant.  

5 The LTSA does not distinguish between slow- and fast-charging. For 
context, there were 8 million new private automobile registrations in Texas in 
2017 (US FHA, 2017). 
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grade PCM, the Polaris Power System Optimizer (PSO) that is imple-
mented on the AIMMS optimization platform and solved using CPLEX, to 
simulate the day-ahead power market in ERCOT. PSO implements the 
commitment and security-constrained economic dispatch problem with 
the linearized (“DC”) power flow approximation. PSO has been show-
cased at FERC technical conferences (Tuohy et al., 2013; Goldis et al., 

2014), used in academic work (Tabors, 2016; Goldis, 2015), and served 
as a benchmark for the development of other PCMs, such as Sandia 
National Laboratory’s Prescient PCM (Siirola, 2018). 

We configure PSO with a simplified set of market rules that ease the 
interpretation of results as shown in Table 1. The first five assumptions 
are conservative in the sense that they likely underestimate the system 
costs of serving HFCs. Since HFC demand profiles are volatile, they place 
a burden on real-world grid operators for procuring fast-response re-
serves to deal with real-time deviations from expected day-ahead 

schedules at the sub-hourly time scale (Burnham et al., 2017). Our 
model does not capture these costs. 

The relevant outputs from the PSO model include operational met-
rics like hourly generation dispatch and curtailment, transmission line 
flows, and fuel consumption; financial outcomes like nodal prices 
(LMPs) that include energy, congestion, and loss components, generator 

revenues, and cost to load; and the shadow prices for model constraints 
and the final objective function value. The objective function value 
(hereafter “cost”) is particularly important as it represents one annual 
operational cost number for each of our modeled scenarios. It is calcu-
lated according to Equation (1) below. The solution cost decomposes 
into the “Economic Costs” from generation operation and redispatch as 
well as the “Penalty Costs” from the violation of system constraints.6 

Although there are many system constraints embedded in the model that 
could trigger penalty costs, only transmission line penalties are incurred 
during our simulations. The Economic and Penalty dichotomy is 
important for our interpretation of our results: while the penalty costs 
are figmentary in the sense that they represent unrealistic system op-
erations, they nevertheless capture the costs of serving incremental 
infrastructure. The alternative modeling technique would be to value 
unserved demand from HFCs and avoid transmission penalties. Instead 
we allow HFC demand to violate feeder transmission line limits since 
those violations have a well-defined value from grid operators (Poto-
mac, 2020). 

While the PCM is configured as above based on grid operator prac-
tices today, we expect it will maintain its validity through 2033 and 

Fig. 3. EV charger demand profile simulation. Left: Empirical results from The EV Project (INL, 2013) showing hourly utilization factor distributions for 100 
publicly accessible DC fast-chargers (analogous to our HFCs) and the 6474 private residential Level 2 chargers that were tracked over the course of 2013. Top right: 
We fit normal distributions to each 15-min interval of the FC data, from which we sample during scenario construction to represent individual charger demand. 
Bottom right: Station-level demand for HFCs is the summation of many individually sampled demand profiles, here 500. 

Table 1 
PCM Assumptions. The transmission penalty is derived from ERCOT market 
rules (Potomac, 2020), while the unserved energy penalty is set above ERCOT’s 
$9000/MW offer cap (Brattle, 2019a) to ensure that the least-cost optimization 
model prioritizes serving load to the extent possible, even if it means violating 
one or more transmission constraints.   

(1) Energy-only (no ancillary services or 
capacity payments are modeled)  

(4) Hourly resolution  

(2) Day-ahead only (no recommitment or 
redispatch in a real-time market) 
with hourly resolution  

(5) Rolling-horizon approach with a 
24-h simulation period informed by 
a 36-h look-ahead planning period  

(3) Deterministic realizations (no 
uncertainty about load or generation 
requiring conservative commitment)  

(6) $15000/MW penalty for unserved 
energy and $9251/MW penalty for 
transmission limit violation each 
hour  

Cost =
∑

(Variable  generation  costs  +  Fixed  generation  costs  +  Net  Storage  Costs)h

⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞
Economic  Costs

all simulation
hours, h

+

(Unserved  energy  penalties  +  Transmission  limit  penalties  +  ⋯)h⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Penalty  Costs

(1)   

6 Additional penalty terms are omitted to save space. They are uniformly zero 
in all of our simulations. 
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beyond, including the high penalties for transmission constraint viola-
tion and unserved energy. Even if grid operators were to be majorly 
restructured, the PCM configuration represents efficient economic 
dispatch which should remain the targeted outcome (Hogan, 2014). 

2.5. Validation 

To validate the many assumptions used in defining the PCM for this 
study, we performed a benchmark test of our Base Case (the 2033 
coupled charger-grid model without HFCs) against actual ERCOT op-
erations in 2019 (Github, 2020). We compared monthly energy demand, 
monthly power prices (system averages), and monthly generation by 
fuel type, as shown in Fig. 4. The demand and generation were 
compared on a normalized basis given the significant growth of both in 
absolute terms from 2019 to 2033. We found good matching between 
the two systems, specifically noting: load patterns with peaks in the 
summer and winter (5.1% mean absolute error of monthly normalized 
loads) and seasonally-dependent generation shares for different tech-
nologies (2.7% mean absolute error of month-fuel normalized 
generation). 

3. Results and discussion 

We present our basic results in Section 3.1, showing how the 
aggregate system cost increases due to HFC power demand in various EV 
penetration scenarios. We also discuss how these costs are decomposed 
between Local vs. Zonal Effects and Economic vs. Penalty components, 
and we make use of the granular resolution of our model to investigate 
the impacts due to individual HFC stations. In Section 3.2 we make use 
of this framework to show how mitigation methods, and in particular 
energy storage and demand flexibility, affect these results. Section 3.3 
generalizes these findings in a discussion. 

3.1. Incremental costs due to HFCs 

Fig. 5 shows the incremental power system costs by month due to the 
HFC network across different EV penetration levels (and corresponding 
HFC power demands). The incremental costs are decomposed into the 
difference in the modeled system cost between the Distributed Case and 
the Base Case (“Zonal Effects”) and between the Concentrated Case and 
the Distributed Case (“Local Effects”) as introduced in Fig. 1 and into 

Fig. 4. Comparison of simulated ERCOT system in 2033 to actual ERCOT system in 2019. Top left, Load: Total monthly energy consumed in the ERCOT 
footprint, normalized by the load of the highest-consumption month. Bottom left, Prices: Average system prices paid by load per month, for two representative 
shapes: the highest-load shape, weekday “on-peak” hours (6AM–10PM), and the lowest load shape, weekend “off-peak” hours (10PM to 6AM). The simulated data are 
the load-weighted averages of ERCOT weather zone LMPs. The historical data are the load-weighted averages of DA ERCOT load zone SPPs (LMP + reserve costs). 
Differences in the summer months may be due to unmodeled reserve costs or transmission gold-plating, as previously noted. Center, Generation: Monthly energy 
produced in the ERCOT footprint, segmented by fuel type, and normalized by total monthly generation. Right, Installed Capacity: Total system power capacity, 
segmented by fuel type. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. System cost impacts of HFCs. Incremental system costs of HFC infrastructure are measured as the difference in objective function value between Cases, 
normalized by Base Case load. the Base, Distributed, and Concentrated Cases, for various levels of EV penetration relative to ERCOT’s LTSA forecasts for 2033. Key 
trends are the increasing costs with increasing EV penetration, the presence of both Local and Zonal Effects, and non-linearity in the Local Effects. 
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Economic and Penalty Costs as introduced in Equation (1). The costs are 
normalized by the total system load (excluding HFCs) in the LTSA EV 
Penetration Base Case for each month. 

We describe three effects in Fig. 5. First, the additional demand from 
HFCs increases costs, and this effect increases as EV penetration in-
creases. This is expected, since additional HFCs are incremental load to 
be served by incremental generation. In the 100% Penetration scenario, 
the average annual costs increase by $1.70 per MWh of load served. This 
corresponds to 3%–6% of simulated system-wide monthly-averaged 
LMPs (shown in Fig. 4, ranging from $27/MWh to $53/MWh), or about 
8% of the average annual Base Case system costs (i.e., the system 
without any FC demand, about $21 per MWh of load served). Second, all 
four cost types – Penalty and Economic components of Local and Zonal 
Effects – are present, and the magnitudes of Local and Zonal Effects are 
similar in the baseline LTSA EV Penetration configuration. Third, the 
costs increase nonlinearly with EV penetration due to rapidly growing 
Local Penalty Costs. (For example, first differences of July total cost 
increases as EV penetration grows in steps of 25% are $0.36/MWh, 
$1.05/MWh, $1.55/MWh, $1.99/MWh.) The other components grow 
more slowly and linearly. This reflects a discontinuity in marginal 
operational cost as EV penetration increases: as soon as an HFC station 
grows large enough to cause network congestion or thermal violations in 
its vicinity, it becomes much more expensive to operate. This assertion is 
supported by Figure A4 in the Appendix, which shows how certain HFC 
stations rapidly become more impactful to system costs as EV penetra-
tion increases. 

We further explore the Local Effect components in Fig. 6. We plot 
distributions of the absolute values of the difference of hourly LMPs, 
hour by hour, between the Distributed Case and the Concentrated Case 
across the full year for each HFC station, restricting the analysis to the 
LTSA EV Penetration case. (By choosing the Distributed Case as a 
baseline, we exclude effects from aggregate differences in demand.) 
These distributions of differences are indicative of the local impacts 
attributable to each individual HFC station. Because of the intercon-
nectedness of the grid, such a proxy for individual effects must be used. 
The main features of these results are (1) the large range of local impacts 
across HFC stations – the means span five orders of magnitude from 
about $1/MWh to about $10,000/MWh – and (2) that the majority of 
HFC stations have relatively low impact at about the $1/MWh level: the 
majority of system impacts is caused by a minority of HFC stations. At 
these exceptionally impactful stations we observe bimodal distributions 
in the difference in LMPs, shown by the violins in the right panel of 
Fig. 6. The high-end mode is indicative of periodic congestion events 

that elevate LMPs in the Concentrated Case over the Distributed Case, 
while the low-end mode (where there is little difference between cases) 
indicates low load periods. The right-hand panel of Fig. 6 also highlights 
that the impacts do not scale simply with HFC peak power demand. 

3.2. Mitigation of increased system costs 

We simulate two strategies to mitigate the increased system opera-
tion costs from HFC stations shown in the previous section. We consider 
both (1) the installation of co-located energy storage and (2) the 
implementation of demand flexibility programs as feasible strategies 
that HFC station developers might consider. Energy storage is modeled 
as a grid-connected 4-h battery with specifications based on the Tesla 
Powerpack; we assume constant 89.5% round-trip efficiency, 100% 
depth of discharge, and no degradation with use (Tesla, 2020). Since the 
battery is assumed to be co-located with the HFC station, it is modeled 
on the same node in the power system. In every other respect, we model 
storage as a fully independent wholesale asset that is optimized by the 
PCM in the same way as other generation: to provide least-cost system 
operation. Finally, we only model energy storage at the six labeled HFC 
stations in Fig. 6, chosen as particularly likely to require mitigation 
efforts. 

The modeled demand flexibility allows an individual HFC’s charging 
demand to be shifted forward or backward in time by 1 h, without 
expense, in response to wholesale prices. This relaxes an important 
assumption, that HFC demand is inflexible (Burnham et al., 2017). 
Flexible HFC demand might correspond to an EV driver spending time in 
a co-located café or co-working space while waiting for lower charging 
rates. We take a recursive approach to add flexibility to our relatively 
static modeling framework, instantiating new model configurations 
with reference to already solved models. We represent flexibility in in-
crements of 5% of the maximum demand of each HFC. As an example, to 
simulate new HFC charging profiles with 5% demand flexibility, we 
reassign demand from the base charging profile (with 0% flexibility, 
Fig. 3) by referencing prices from an already solved model with 0% 
demand flexibility; then to simulate charging profiles with 10% demand 
flexibility, we reassign demand from the 5% demand flexibility charging 
profile using the prices from the already solved model with 5% demand 
flexibility; and so on. This process and its results are shown visually in 
Figure A2 in the Appendix. 

Fig. 7 shows the mitigation that these strategies provide as their level 
of implementation in the system increases and as the level of EV pene-
tration in the system changes. Here again we focus only on the Local 

Fig. 6. Variation in local effects by HFC station. Left: Distributions of hourly charging impacts from HFCs, with each HFC station arranged on the x-axis in order of 
mean local impacts. The plotted distributions are the differences in absolute hourly LMPs between the Concentrated Case and the Distributed Case. Red dots indicate 
the selected HFC stations on the right-hand side. Right: The five most impactful HFC stations, with average effects from Local Constraints ≥ $100/MWh, and a 
selected normal HFC station (F) are plotted. These stations are highlighted in Fig. 2 above. The stations are arranged from left to right in order of ascending peak 
demand, illustrating that impacts do not correlated simply with size. (For interpretation of the references to color in this figure legend, the reader is referred to the 
Web version of this article.) 
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Effects but with a twist: incremental system costs from the inclusion of 
HFCs are shown on the y-axis, measured as the additional cost of the 
Concentrated Case with mitigation measures over the Distributed Case 
without mitigation measures. Thus we effectively ask how much of the 
Local Effects due to HFCs a specific mitigation measure is able to miti-
gate; an incremental cost of zero would indicate that the mitigation 
strategy mitigated all of the Local Effects of the HFC station. As before, 
we decompose the Local Effects into Economic and Penalty components. 
Fig. 7 shows that both energy storage and demand flexibility mitigate 
the system cost impacts of concentrated HFC demand, primarily by 
reducing Penalty components of Local Effects, but energy storage is 
much more effective: storage deployed at only 0.6% of the nameplate 
capacity of all HFC stations on the system outperforms demand flexi-
bility deployed at 20% of nameplate capacity. (It should be recalled, 
however, that the storage is concentrated at the 6 most impacted nodes, 

while demand flexibility is applied across all HFC stations.) 
The reason for this difference is intuitive if demand flexibility is 

considered as a highly constrained (but cheap) 1-h battery. This is close 
to the truth: a given unit of flexible demand is assumed to be able to 
transpose itself either 1 h into the past or the future, to times t-1 or t+1, 
depending upon the power grid’s LMP price signal, just like a battery 
performing energy arbitrage. This is more constrained than true storage, 
though, which may carry its charge for a functionally unlimited amount 
of time and also discharge over a longer period of time. Understood this 
way, both mitigation strategies work by shifting grid electricity con-
sumption at HFCs during grid-strained periods. The 4-h battery, though, 
can mitigate longer strain on the grid and so is more effective at man-
aging congestion introduced by grid-HFC interactions, which lasts for 
multiple hours (see Figure A3 in the Appendix). 

Fig. 7. Effectiveness of strategies to mitigate HFC deployment. The y-axis plots the increase in system objective function from the Distributed Case to the 
Concentrated Case (thus showing the “Local Effects”) with a variable amount of mitigation (modeled only in the Concentrated Case). The x-axis shows the variation in 
the amount of mitigation deployed, represented as a percentage of modeled HFC nameplate capacity in the system. The “100% Penetration” case is the LTSA planned 
EV penetration level. 

Fig. 8. Present value of storage as a function of EV penetration. The present value of battery storage (normalized by battery nameplate capacity) is plotted 
against battery capacity for different cases of EV penetration. Battery value here means positive value to the power system, as measured by the change in the 
economic component of the objective function value from the Concentrated Case without batteries to the Concentrated Case with a variable amount of batteries. Two 
estimates of the present value of wholesale energy storage costs are superimposed for reference, which correspond to a range of $225/kWh-$469/kWh for capital 
costs given by Lazard (2019) for 4-h wholesale batteries operational. Fig. 8 shows the results of this exercise for simultaneous deployment of energy storage at the 6 
most impacted HFCs in our simulation, those highlighted in Fig. 2. The figure shows that the marginal benefit of the battery decreases as its size increases, a trend 
consistent with prior studies evaluating the value of storage (Mallapragada et al., 2020), due to increasingly active management of high-priced hours. Despite this, 
the batteries are still profitable investments in all tested EV penetration scenarios that contain HFCs. The co-located batteries are uneconomic, however, in the 
simulations that do not contain HFCs. (Operational batteries exist at the HFC nodes though HFC stations are not present.) 
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3.3. The importance of locational and temporal characteristics of 
charging demand 

Where a particular HFC station is located is a crucial determinant to 
its overall operational impact on the power grid. This is an implication of 
the distributions shown in Fig. 6, which on the left shows the extreme 
variation in system impacts between stations and on the right show that 
these impacts, where they occur, are not correlated with the size of the 
station’s demand. Additionally, the locations of these stations, high-
lighted in Fig. 2, do not reveal any obvious geographic patterns. Rather, 
our model demonstrates that the impacts depend upon the relative 
strength of the transmission grid in each HFC station’s locality. (This 
point is illustrated in Figure A1 in the Appendix, which shows an 
example of how a local network with low power transfer limits can 
restrict an HFC station’s operations.) This insight around “hosting ca-
pacity” is not novel. Just as the literature surrounding distribution 
network-scale impacts of EV chargers is concerned with peak usage 
overwhelming network components, the same holds true for HFCs in-
tegrated directly into the transmission network. Not all 69 kV feeder 
lines on the power grid are sized to serve the incremental 
10MW–100MW peak loads that the simulated HFC stations represent. 

What we have newly demonstrated, however, is that which HFCs will 
cause problems when does not follow a predictable pattern. It is not 
geography or peak demand alone that determine these, but the combi-
nation measured against local conditions, which is not obvious from a 
casual survey. So long as the charging load at an HFC station is reliably 
servable by its neighborhood transmission lines, its costs to power grid 
operation will only be mild: the incremental load will result in more 
generation being dispatched from the top of the generation supply stack. 
These incremental economic cost components, shown as the lighter 
colors in Fig. 5, are approximately smooth functions of the incremental 
load in large power systems. As HFC station size increases past the ca-
pacity of its feeder network, however, its usage may threaten to violate 
system constraints, and so congestion begins to much more severely 
impact power grid operational costs. These severe impacts are repre-
sented as the penalty cost components in our model. Fig. 5 shows these 
costs increasing non-linearly as EV penetration increases on the system: 
with each penetration step, more of the HFC stations breach the practical 
limit of their surrounding network to meet their demand, and so penalty 
costs appear. The point at which penalty costs appear for a given HFC 
depends on its demand and the ability of the local network to meet it; 
these points vary substantially across the system. The ability to estimate 
the full cost of HFC integration thus depends on the ability to exactly 
situate and simulate HFC stations on the power grid. A zonal simulation 
model, of the type used in large scale charger-grid coupling studies (such 
the studies by Heuberger et al. (2020) and Szinai et al. (2020) described 
in the Introduction) will only capture the Zonal Effects of integration, 
which are roughly 50% of the total effects in the LTSA Base Penetration 
case for 2033, as shown in Fig. 5. 

Just as important as the location of an HFC station for determining its 
effect on power system operational costs is the temporal nature of its 
demand, i.e. the charging profile, overlaid on pre-existing system load. 
This study uses the aggregate charging profiles shown in Fig. 3, which 
for HFCs show an important characteristic: they have relatively wide 
peaks. The proportion of time on a median day that the charging profile 
is above 50% of its daily peak is roughly 8 h. Since the peak demand 
period is when the HFC will most strain the power grid, the duration of 
its peak is important. If the broad peak in HFC charging demand 
observed in the limited empirical data holds true even with increasing 
adoption of EVs, it has the potential to drive congestion events and high- 
priced periods that far-exceed the capabilities of a 1-h battery and even a 
4-h battery to shift (See Figure A3 in the Appendix for additional 

illustration of congestion durations at HFCs.). While it follows that 
longer duration batteries would be more effective mitigants, diminish-
ing returns should be expected, and longer duration storage solutions 
are accompanied by increasing costs that must be weighed against their 
benefits. 

4. Conclusions and policy implications 

4.1. Roles for mitigation strategies 

As a case study, we consider the economic cost-benefit problem 
confronting the developer of an HFC station who wishes to co-locate (or 
is required by the system operator to include) a 4-h battery to mitigate 
local system impacts. Since the battery will be grid-connected, it is able 
to profit-maximize and monetize more benefits than if it were con-
strained only to offset the cost increases associated with the relevant 
HFC station. While we could simply recover the revenue accorded to the 
battery in the PCM solution – its optimal energy arbitrage value – we 
consider a more optimistic case wherein the developer is working 
together with the local utility or grid operator and is able to capture 
more of the economic benefits via bilateral transfer payments. Thus we 
model the Economic components of the system-wide mitigation value 
from the battery as its value or revenue (See Fig. 5. Note that also 
including the Penalty components of our results is not necessary to make 
our point.). Under this model, we can calculate the present value (PV) of 
the battery system’s revenues for a 15-year lifetime with a 7% discount 
rate and compare it against the PV of the battery system’s lifetime costs, 
both capital and. 

The above simplified illustration of the investment decision for 4-h 
batteries at HFC stations is presented to motivate two points. First, 
just as the locational characteristics of the HFC load are critical to 
determining station operational impact on the power grid, the location 
of mitigation infrastructure is also critical. It is only once strong LMP 
effects are caused by charging demand that energy storage can break 
even on its costs via energy arbitrage value. Second, although privately 
developed batteries that profit from the energy market can make 
financial sense, Fig. 8 points to diminishing returns as the trendlines run 
to the right: the grid will not support an unlimited amount of profitable 
installed battery capacity. Considering that the 2033 ERCOT system will 
almost certainly host several hundred MW or more of grid-tied energy 
storage, and with 100 MW already in operation by 2019, the economic 
case for future HFC co-located storage may be weaker than implied here 
(EIA, 2020b). (The, 2018 LTSA does not forecast energy storage in any of 
its analytical cases, which is why we do not model it in our Base Case.) 

Another potential mitigation strategy beyond energy storage and 
demand flexibility is transmission reinforcement, either through 
reconductoring to increase the power transfer limits of existing lines or 
through the construction of new lines. In light of the above discussion, it 
is natural to think of expanded transmission capacity as another tech-
nology capable of shifting demand: it is an “infinite duration battery” 
that relies on dispatchable generation elsewhere in the grid and for a 
fixed nameplate capacity will be at least as effective as storage or flex-
ibility. A significant new degree of freedom is introduced when 
considering transmission expansion, however: the system planner must 
choose which of the local transmission lines to upgrade, or where to 
construct a new one. For energy storage and demand flexibility, the 
planner must only decide how large of a system to co-locate with the 
HFC station. (It is granted that energy storage and other flexibility re-
sources can be added anywhere on the power grid, but this paper takes 
the mitigation strategies from the perspective of the developer, who will 
be much more practically constrained to the locale of the HFC station.) 
For these reasons of added complexity, we did not systematically 
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analyze transmission upgrades. We are able to use our model to explore 
case studies, however, as shown in Figure A1 in the Appendix. 

While demand flexibility could be considered an inherent (if limited) 
mitigation measure, and energy storage and transmission reinforcement 
as reactive measures, there also exists the possibility for cost mitigation 
and avoidance through proactive siting of HFC stations. Such siting 
would cause the stations to be built in low-impact locations with strong 
grid connections. This is an active area of research with immediate 
implications as governments and firms plan charging network in-
vestments. The problem formulation in such studies usually does not 
consider minimizing power system costs, but instead seeks to minimize 
driver range anxiety and total power rating of EV chargers installed (For 
example, Xu et al. (2020) recently estimated an optimal charging 
network topology on the Texas highway system. Erbaş et al. (2018) did 
the same for Turkey. Neither of these studies accounts for power system 
operational costs.). Particularly if government or utility policies were 
reformed to shift grid costs to EV charger developers, however, it is 
likely that “optimal” locations would shift to reduce costs in the power 
system. Although we did not attempt to co-optimize the location and 
operation of the EV charging infrastructure in this study, we do note that 
moving HFC stations even by tens of miles will not always change the 
point of interconnection (See Figure A5.), especially in rural areas, 
owing to the limited number of transmission interconnection points. 
Therefore, the practicality of proactive siting as a mitigation method for 
transmission-level costs is not immediately apparent. 

We return the discussion to transmission reinforcement and energy 
storage co-location as effective mitigation strategies that do not break 
the inflexibility assumption for HFC demand. They are both important 
options for system operators and private developers to consider, but they 
differ in key ways. Transmission lines are commonly more highly 
regulated assets than energy storage facilities, and the latter may have 
difficulty finding approval for utility rate base decisions (Pandžić et al., 
2018). In the USA, recent market reforms brought on by FERC Orders 
841 and 2222 promise to promote the merchant development of storage, 
while FERC Order 1000, which attempted to do the same for trans-
mission, has seen mixed success (Brattle, 2019b). Both transmission line 
reconductoring and new-build costs scale by length and capacity 
whereas energy storage costs scale by duration and capacity. Trans-
mission construction has longer lead times than storage development 
(Eto, 2016; EIA, 2020b). These factors combine to make the choice of 
mitigation measure complex, even after the need for mitigation is 
identified, which the rest of this paper shows to be no easy task itself. 

4.2. Conclusion 

Projections for EV adoption continue to be revised upward, which 
makes studying the impact of this new type of demand on the power 
system increasingly important. We complement existing studies of the 
impact of EV charging demand on the power grid (1) by using a spatially 
and temporally resolved PCM of the transmission-level power system, 
and (2) by focusing specifically on highway fast-charging infrastructure, 
which is unique in the inflexible, high power, and spatially concentrated 
nature of its power consumption. Through simulations, we quantify the 
cost impacts of transmission congestion and generation redispatch 
attributable to HFC deployment, and we show that these impacts are 
irregularly distributed according to the specific network location of the 
fast-charging HFC station and the temporal nature of fast-charging de-
mand. By segmenting and attributing the incremental power system 
costs due to HFC integration, we demonstrate that the temporal and 
spatial resolution of our model is necessary to fully account for these 
costs. We further show that these impacts can be mitigated, but that such 
mitigation must account for both the locational and temporal aspects of 
the problem. Such aspects advantage longer-duration solutions, such as 
energy-storage, over shorter-duration solutions, such as demand 
flexibility. 

While compelling, our results could be further developed. A simple 
but powerful extension of our analysis would be to model more com-
mercial details in the PCM. Accounting for real-time markets, ancillary 
services, and non-deterministic load and weather outcomes could 
demonstrate higher costs for HFC integration as well as more benefits 
from mitigation. A more involved extension would deepen our mitiga-
tion analysis by systematically analyzing transmission solutions, as well 
as battery storage degradation costs. More novel grid management 
techniques, such as the temporary relaxation of voltage constraints, 
could be explored (Cvijić et al. (2018) have proposed AC power flow 
models to investigate this.). Looking to the transportation side of our 
model, implementing a dynamic representation of HFC demand, such as 
Szinai et al.’s (2020) BEAM behavioral model, would add more nuance 
to our results and allow us to investigate peak grid impacts, e.g. around 
heavy-traffic holidays. Short of full behavioral model coupling, a more 
detailed but still exogenous charging model could be integrated, such as 
that developed by Dominguez-Jiminez et al. (2020). Mitigation methods 
might also be considered inside the transportation model that could 
relax the inflexibility assumption of HFC demand. For example, dynamic 
tolling on highways could reroute traffic around grid congestion, or 
drivers’ flexibility could be increased by giving them access to pricing 
information before they leave on a journey. Extending our study in these 
directions ultimately would allow us to better investigate the total 
economic cost-benefit of HFCs. In turn, that would make discussion of 
different models for deploying HFCs – e.g. private developer driven, 
utility driven, etc. – compelling. This research might also be generalized 
to consider more broadly the effects of electrification: we have shown 
that the inflexibility assumption from HFCs is important to the cost and 
mitigation analysis, and this may hold for other new types of electricity 
demand as well. We have also shown how a “duration framework” helps 
to understand the substitutability of demand flexibility, energy storage, 
and transmission reinforcement for mitigation. This viewpoint might 
transfer to other applications as well. 

The results of this research should help to persuade system operators 
and utilities to begin studying HFC integration challenges to prevent 
operational difficulties from arising that would prevent a slowdown in 
EV charging infrastructure buildout. A proactive approach would iden-
tify likely concentrations of HFC stations along transportation corridors 
and stress test the local transmission infrastructure, as we have done 
here. The increasingly interwoven systems of power and transportation 
must be kept in close coordination. 
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Appendix

Fig. A1. Example local network topology. Left: An illustration, similar to the right side of Fig. 2, depicting the modeled HFC stations colored according to their 
impacts on the system. This impact is measured as the logarithm of the absolute difference between the HFC nodal LMPs in the Concentrated Case and the Base Case, 
using the Base EV Penetration from ERCOT’s LTSA. This is the same metric used in Fig. 6. Right: The local network topology at the circled HFC station in the left 
panel. The edge annotations represent the power transfer (MW) along each line as a fraction of that line’s rated line limit (MW), for hour ending 6PM on August 21st 
in the model. Comment: The left panel emphasizes that the most impacted HFC stations are geographically distributed, and, together with Fig. 6, imply that the 
cause of individual HFC station impacts is local network congestion. The right panel illustrates power transfer bottlenecks that may occur to supply power to HFC 
stations.    

Fig. A2. Modeling demand flexibility. Here we show how hourly charging schedules shift as the HFC inflexibility assumption is relaxed. The color in each tile 
corresponds to the system-wide charging demand in a specific hour, summed over the entire year, and differenced against the (inflexible) base case. As the amount of 
modeled (1-h) demand flexibility increases from 0% to 20% of the maximum demand of each HFC station, aggregate charging activity at modeled HFC stations shifts 
predominantly from the mid-afternoon to the late-morning and late-night periods.  
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Fig. A3. Congestion duration. The normalized hourly LMPs, averaged across all simulated days, at six high-impact HFC stations are plotted in black for the 
Concentrated Case without any mitigation. The bolded red lines illustrate the “full width at half maximum” for each of the HFC station price curves. This visually 
illustrates the different durations of congestion events (high priced time periods) at different HFC stations. The referenced HFC stations correspond to those 
highlighted in Figs. 2 and 6. 

Fig. A4. Most Impacts HFC Stations by Penetration Scenario. Here we show the relative impact that each HFC station has on the power grid, as measured by the 
difference in mean absolute hourly LMPs at each HFC station’s node between the Concentrated Case and the Distributed Case, which is the same methodology used to 
present the data in Fig. 6. Higher ranked stations have a higher difference in prices, implying that the stations have more of an impact on the grid. The calculation is 
done for five EV penetration scenarios, here presented along the x-axis relative to the 2018 LTSA EV penetration scenario. The Top 5 impacted stations as identified in 
the Main Text (see Fig. 6) for the 100% EV Penetration scenario are not always the top 5. 

Fig. A5. Distribution of HFC Feeder Line Interconnection Lengths. This histogram shows about 25% of HFC stations we model are at least 5 km distant from their 
nearest transmission-level bus. For these far-flung stations, there is little ability to optimize power system impacts by moving the HFC stations along the highway 
networks. Even for the HFC stations closer to their points of interconnection, moving the stations to change the interconnection may not alleviate grid congestion. 
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