Modeling and Valuation of Pumped Storage Hydropower Resources

FERC Technical Conference

Majid Heidarifar, EPRI Nikita Singhal, EPRI Aidan Tuohy, EPRI Russ Philbrick, Polaris Erik Ela, EPRI Pablo Ruiz, NewGrid

June 23, 2021

 Image: margin base
 Image: margin base

 www.epri.com
 © 2021 Electric Power Research Institute, Inc. All rights reserved.

This presentation is, in part, supported by the U.S. Department of Energy, Water Power Technologies Office under Award Number DE-EE0008783 <u>P</u>redicting <u>Unique Market Pumped Storage Significance</u> (PUMPSS)

Pumped Storage Hydro Power Resources

» By far the largest storage resource in the current electric grid

- Fast Ramping Capability
- Energy and AS provision
- Help in both shortage and surplus conditions (pumping and generation)
- » Traditional Design not as flexible
 - Discrete operating range: block loaded especially in pumping mode
 - Need commitment decisions
 - Can have big impact on congestion
 - Historically there has not been a need for optimization because of predictable charge/discharge times

Disclaimer: "This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Disclaimer: This presentation includes draft results that are subject to change.

State of the Art

» PSH presently participates in majority of ISO products

- Offer as separate pump/generator participants
- PJM Hydro optimizer, optimizes mode of operation to minimize cost and ensure SOC targets
- » FERC Order 841: ISO/ RTO design proposals implementation details

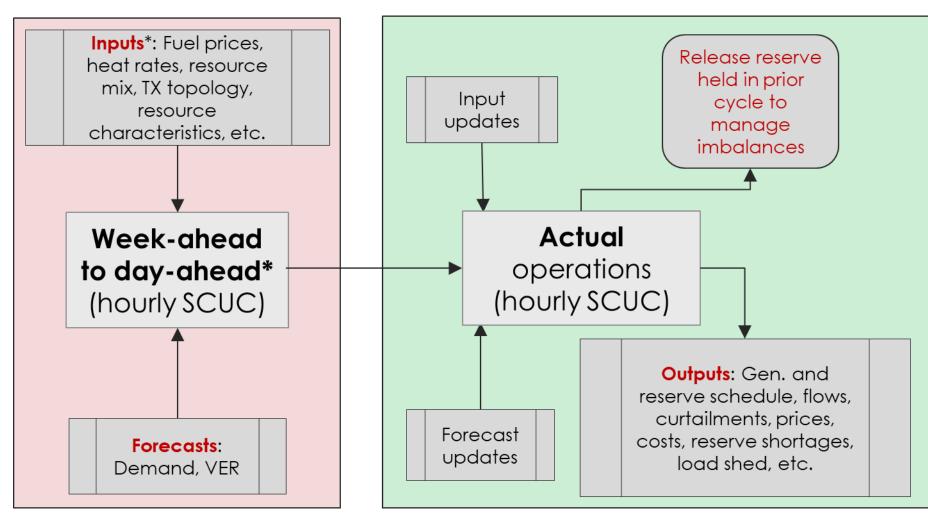
Order 841 Aspect	NYISO	PJM	SPP	ISO-NE	MISO	CAISO	
Participation	 Most entities have proposed two separate participation models: Continuous (e.g., batteries) and discontinuous (e.g., PSH) models Rationale: ESRs are continuously dispatchable; PSH resources have forbidden operating regions that need to be accounted for appropriately ESRs can participate in energy, AS, and capacity markets (wherever applicable) Rationale: Requirement from FERC Order 841 						
Model	ESRs and ELRs; PSH cannot submit a charge and discharge offer in the same hour	ESRs; PSH plants can still use pumped hydro optimizer	MSRs; PSH plants cannot submit a charge and discharge offer in the same hour	<mark>CSFs and BSFs</mark> (for PSH)	<mark>ESRs</mark> (also supports PSH)	NGRs and PSH model	

AS: Ancillary Service; BSF: Binary Storage Facility; CSF: Continuous Storage Facility; ELR: Energy Limited Resource; ESF: Energy Storage Facility; ESR: Electric Storage Resource; MSR: Market Storage Resource; NGR: Non-Generator Resource; PSH: Pumped Storage Hydro; SOC: State of Charge


Overall Project Objectives

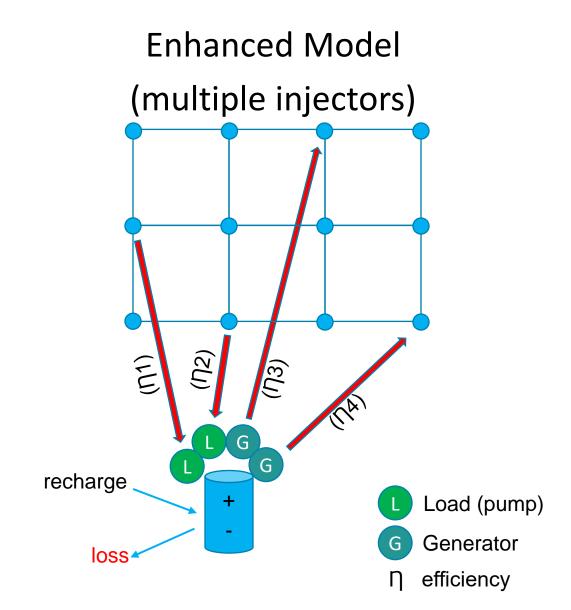
- » Goal: Develop a framework and outline the parameters needed to analyze the energy and ancillary services pumped storage hydropower (PSH) provides to the electricity grid currently and how that value may change as the generation asset mix, especially as it relates to increased penetration of variable renewable energy (VRE), on the grid changes over time.
 - Demonstrate current state-of-the-art in modeling of PSH operation
 - Improve state-of-the-art modeling approaches to better capture value of provision of certain essential reliability services (e.g., ramping, regulation, etc.) coming from PSH
 - Examine the value of different PSH technologies/configurations (e.g., traditional site-specific design, variable speed) and C rate (MWh/MW ratio) to better understand which technologies and storage durations may provide the most value
 - Determine the optimal configuration of PSH technology (i.e., capabilities and C rate) that maximizes PSH economic and system resilience and reliability value given existing market structures at current and anticipated future VRE penetrations

Attain a Deeper Understanding of the Value of PSH



Modeling Approach

Southeast Utility Operations


The model is set up as illustrated in the figure, with a week-ahead run that is updated daily and simulated for every morning using updated information. Hourly 'actuals' will then be used for wind, solar, and load in the real-time run to ensure the impact of uncertainty is adequately captured in the model.

*DASCUC is run at 7AM on the current operating day due to less stressed conditions from midnight – 7am (ISOs/RTOs typically run their DAM at 11AM on the previous operating day or midnight), and run to end of 7 days out

PSH Facilities Modeling Approach in PSO

Southeast Utility: PSH Facilities Modeling Approach

pipe

river

Lower reservoir

PSH 1

- » Upper reservoir: 25,000 MWh
- » SSOC = TSOC = 12,500 MWh
- » Roundtrip efficiency: 80%
- » PSH 1 modeled as four pumps and four turbines (i.e., eight injectors in total)
 - Turbines: 250 350 MW
 - Pumps (block-loaded): Off (0 MW) and On (308 MW)

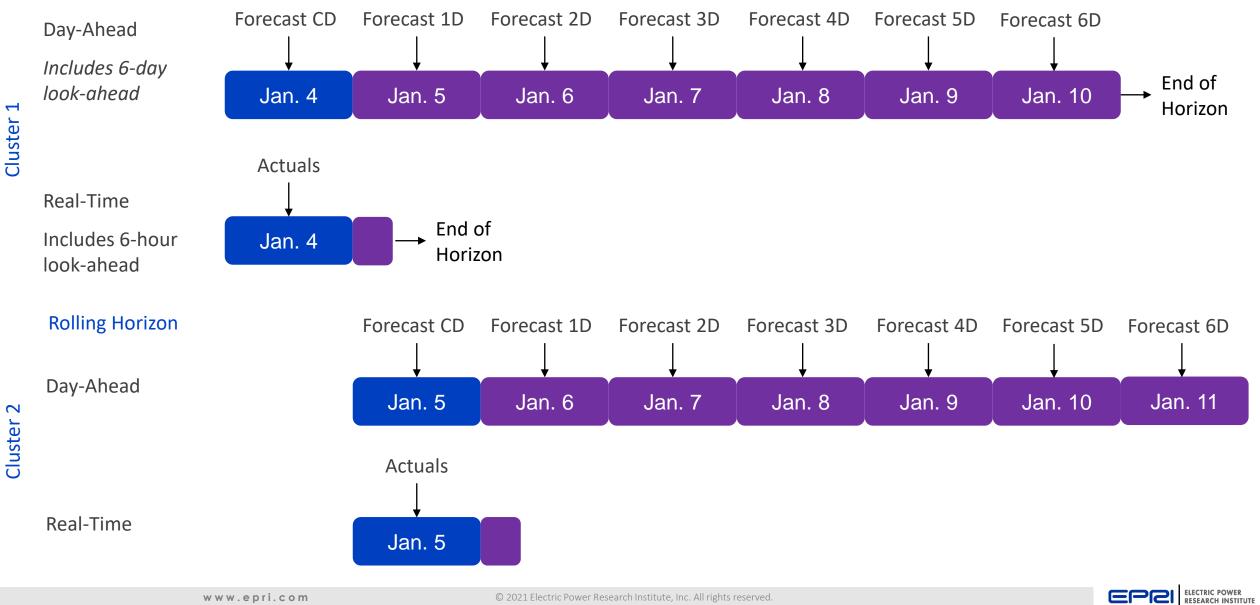
GGGGG

 Pumps and turbines not allowed to operate simultaneously

Upper reservoir

PSH 2

- » Upper reservoir: 20,000 MWh
- » SSOC = TSOC = 10,000 MWh
- » Roundtrip efficiency: 80%
- » PSH 2 modeled as four pumps and four turbines (i.e., eight injectors in total)
 - Turbines: 170 195 MW
 - Pumps (block-loaded): Off (0 MW) and On (205 MW)
 - Simultaneous pumping and generation allowed, but restricted to specific combinations of pumps and turbines


Initial storage levels in dayahead were adjusted using the real-time cycle's (i.e., the last cycle's) results

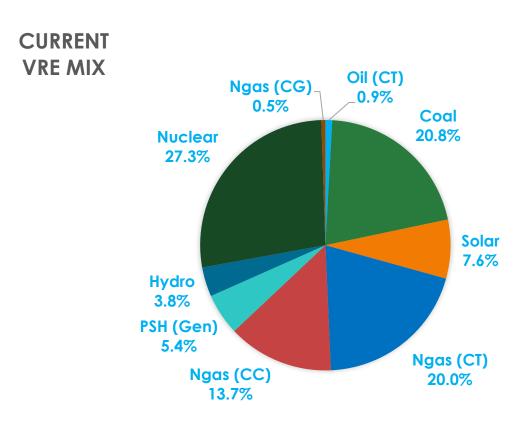
Disclaimer: Assumed specifications in the model. **SSOC**: Start State of Charge; **TSOC**: Target State of Charge;

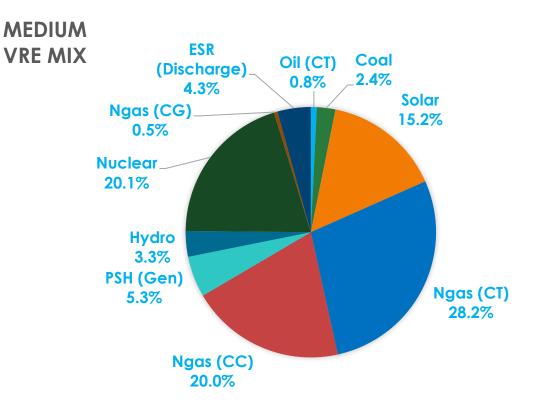


Southeast Utility Operations: Scheduling Process



Proposed Case Studies


Modeling Results



System Characteristics

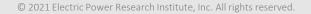
	Current VRE Mix	Medium VRE Mix
Installed Capacity (GW)	40.6	46.5
Peak RT Load (GW)	33.1	37.8

Modeling Results: Sensitivity Analysis (Current VRE Mix)

» Five Sensitivity Analysis Cases

Case 1: Base Case

- Nomogram constraints to prevent simultaneous gen. and pumping
- Limited Dispatchability Range
- Adjustment of DA SOC based on latest RT information
- $_{\circ}$ PSH recommitment in RT
- Case 2: No PSH nomogram constraint
- Case 3: Increased Dispatchability Range (50%)
- Case 4: No Adjustment of DA SOC
- Case 5: PSH Commitment fixed in DA


Modeling Results: Sensitivity Analysis (Current VRE Mix)

Period of study: July 1st – 31st, 2019

Disclaimer: Assumed test case. Results may not reflect exact operations.

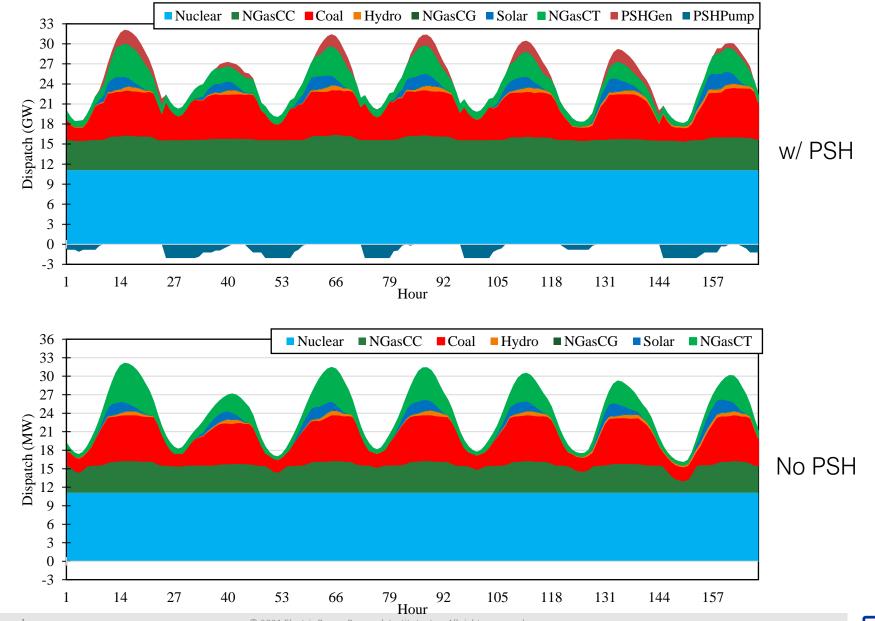
	Total RT Cost (\$MM)	% Cost Change
Case 1: Base Case*	249.7	-
Case 2: Simultaneous gen/pump allowed	249.6	-0.06%
Case 3: Variable Speed Technology (50%)	248.8	-0.36%
Case 4: No Adjustment of DA SOC	250.3	+0.21%
Case 5: PSH Commitment Fixed in DA	251.6	+0.73%

* Disallows Simultaneous gen/pump is not allowed, Fixed Speed Technology, Adjusts DA SOC based on RT telemetry, Allows PSH recommitment in RT

Modeling Results: Total <u>Real-time</u> Energy Cost

Period of study: July 1st – 31st, 2019

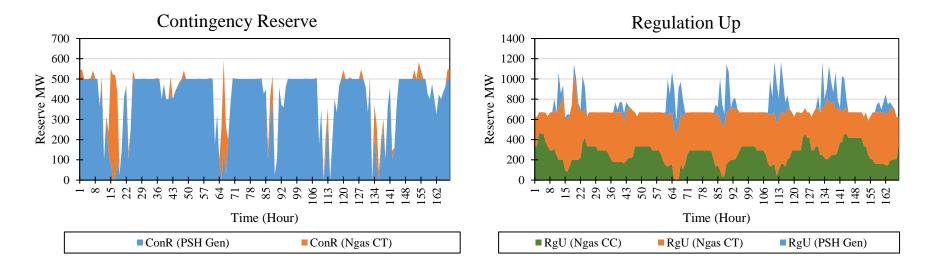
Disclaimer: Assumed test case. Results may not reflect exact operations.


	Current	VRE Mix	Medium VRE Mix		
	With PSH	Without PSH	With PSH	Without PSH	
RT Cost (\$MM)	249.7	256.5	205.6	228.8	
% Cost Increase	-	2.7%	-	11.3%	

PSH reduces the total energy production costs by 2.7% (11.3%) in current (medium) solar penetration scenarios

www.epri.com

Generation Dispatch Profile in RT (Current VRE Mix)


www.epri.com

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Cleared RT Reserve Profile (Current Penetration)

Reserve MW

■ TotU (PSH Gen) ■ TotU (Ngas CC) ■ TotU (Ngas CT)

62

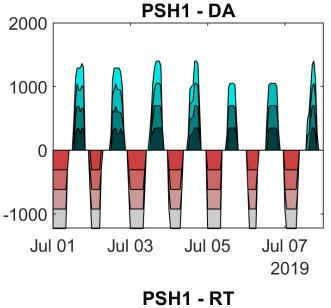
Cycling of Thermal Generators (Current VRE Mix)

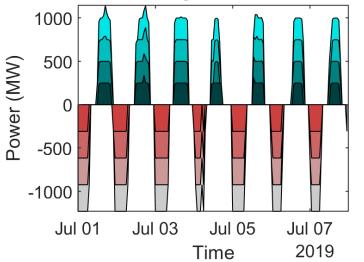
» Increased cycling of Combined Cycle and Combustion Turbine generators in absence of PSH resources

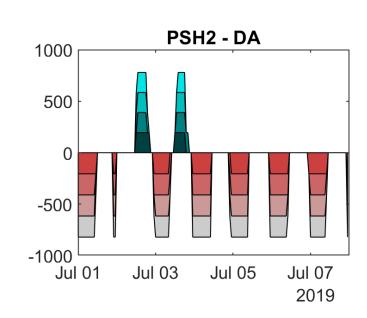
	Coal	Ngas (CC)	Ngas (CT)	Oil (CT)	PSH (Gen)	PSH (Pump)
w/ PSH	13	33	658	0	229	249
w/o PSH	18	42	1038	3	0	0

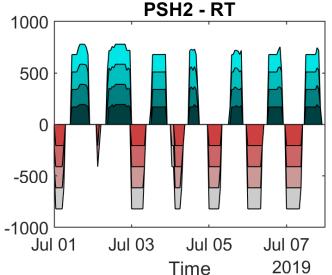
Number of Startups per Technology Type

Startup Cost per Technology Type


	Coal	Ngas (CC)	Ngas (CT)	Oil (CT)	PSH (Gen)	PSH (Pump)	Total
w/ PSH	0.46	0.36	2.49	0.00	0.34	0.00	3.64
w/o PSH	0.51	0.46	3.75	0.09	0.00	0.00	4.81



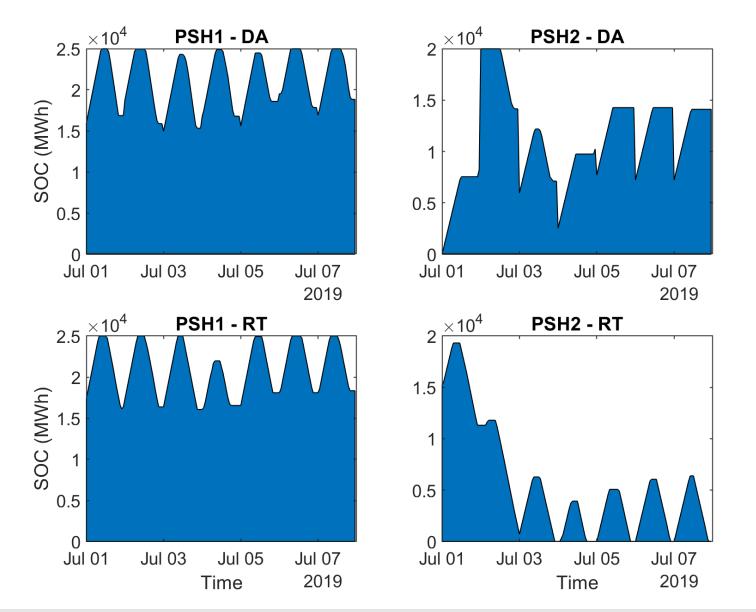

Modeling Results: DA and RT PSH Schedule (Current VRE Mix)


PSH1:

- Reservoir: 25,000 MWh
- Roundtrip efficiency: 80%
- Four pumps and four generators
 - Generators: 250 350 MW
 - Pumps (blockloaded): Off (0 MW) and On (308 MW)
 - Pumps and turbines not allowed to operate simultaneously

Period of study: July 1st – 31st, 2019

Disclaimer: Assumed test case. Results may not reflect exact operations.


PSH2:

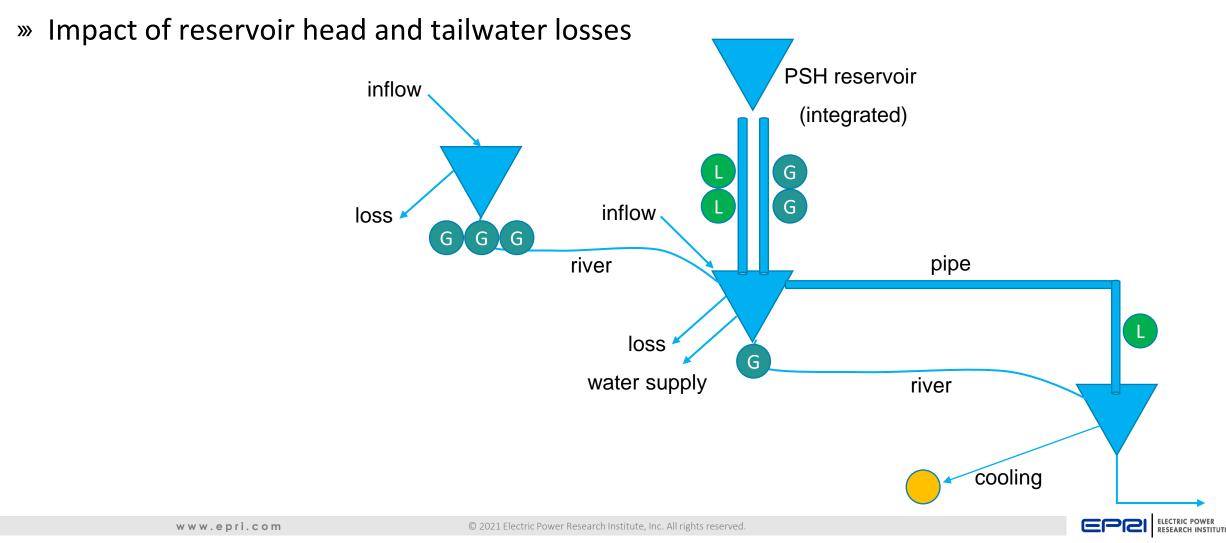
- Reservoir: 20,000 MWh
- Roundtrip efficiency: 80%
- Four pumps and four generators
 - Generators: 170 195 MW
 - Pumps (blockloaded): Off (0 MW) and On (205 MW)
 - Under certain combinations, simultaneous Pump and generation is allowed

Power (MW)

Modeling Results: DA and RT PSH SOC (Current VRE Mix)

Period of study: July 1st – 31st, 2019

Disclaimer: Assumed test case. Results may not reflect exact operations.


Key Observations

- » Total energy production costs increase in absence of PSH resources (by ~2.7% in current penetration, and 11.3% in future medium penetration)
- » PSH reduces cycling of thermal generators (CCs and CTs)
- » PSH contributes considerably to RT contingency reserve, and regulation up and down reserves
- » Allowing simultaneous generation and pumping may not result in considerable cost savings for an uncongested system
- » Block loading has an increased likelihood of resulting in increased operating cost
- » Variable Speed Technology enhances flexible operation
- » There is a need to better understand how adjusting the initial SOC in the DA based on latest RT info can impact the market solution
 - Example: ERCOT

Other Considerations: management of water quantities

- » Cascading systems with time requirements for flow between reservoirs
- » Constraints on river flows

Together...Shaping the Future of Electricity

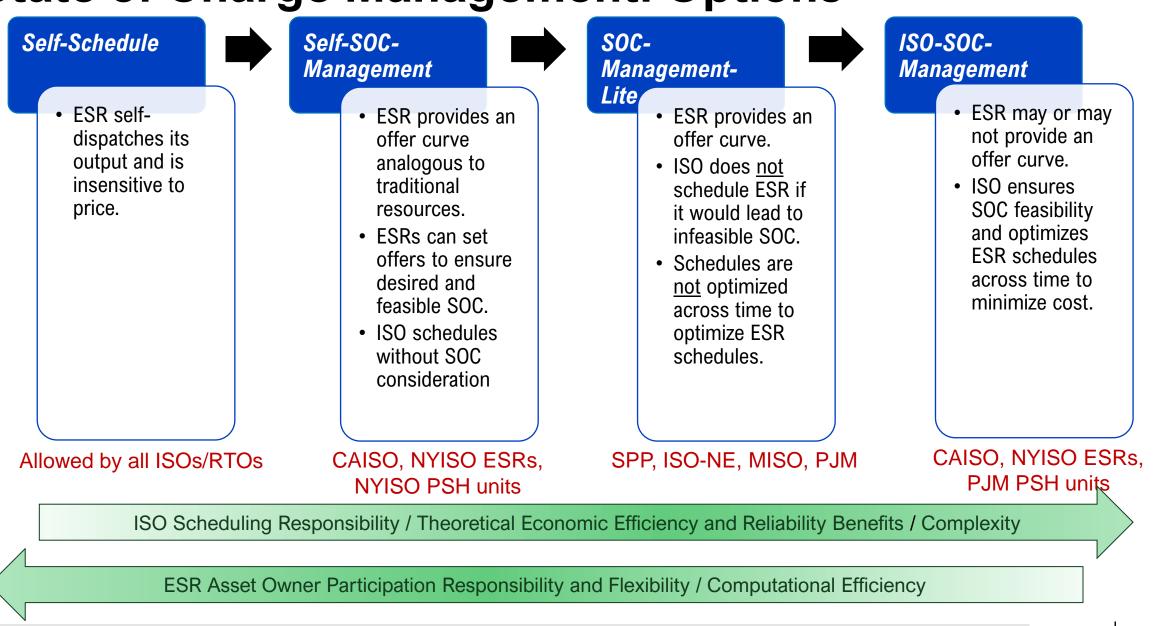
Majid Heidarifar, <u>mheidarifar@epri.com</u> Nikita Singhal Aidan Tuohy Russ Philbrick Erik Ela Pablo Ruiz

Order 841: State of Charge Management

» Required ISO to allow self-management of SOC by ESR

» Required "consideration" of SOC related parameters through bidding, telemetry, or otherwise (e.g., SOC limits, round-trip efficiency)

[1] Electric Storage Participation in Markets Operated by Regional Transmission Organizations and Independent System Operators, FERC Order 841, Final Rule, 162 FERC 61, 127 (February 15, 2018) ("Order No. 841").


ISO/RTO Design Proposals: Implementation Details

Order 841 Aspect	NYISO	PJM	SPP	ISO-NE	MISO	CAISO		
State of Charge Management	 Only a few ISOs are offering <u>both</u> ISO-SOCM and Self-SOCM. Other ISOs are offering a hybrid SOCM-Lite option. ISO-SOCM: SOC is a <u>variable</u> in multi-interval optimization and the ISO ensures SOC feasibility. SOCM-Lite: SOC is a <u>parameter</u> in sequential optimization and the ISO ensures SOC feasibility. Rationale: Requirements from FERC Order 841; SOCM option is also impacted by the market clearing software design 							
	ISO-SOCM (excludes desired ending SOC level) and Self-SOCM (does not ensure SOC feasibility, but ISO will align schedules with telemetered SOC in the RTM); NYISO can suspend ISO-SOCM and default to Self-SOCM; PSH plants – Self-SOCM; ESRs have the option to switch b/w SOCM modes within RTM, and b/w DAM and RTM	ESRs – SOCM-Lite (ensures SOC feasibility and accounts for SOC, and SOC limits in its sequential optimization); PSH plants – ISO-SOCM	SOCM-Lite (ensures SOC feasibility in sequential optimization); can submit max daily MWh limit	SOCM-Lite (includes two new telemetered points in RT, i.e., 15-minute and 1- hour available energy and available storage, to ensure SOC feasibility in sequential optimization); ESFs can submit max daily MWh charge and discharge limits in the DAM. No SOC-specific parameters in DAM.	SOCM-Lite (ensures SOC feasibility in sequential optimization); max daily MWh limit included only for PSH plants	ISO-SOCM (excludes desired ending SOC level) and Self-SOCM (does not ensure SOC feasibility); can submit daily min and max energy limits for DAM		

AS: Ancillary Service; BSF: Binary Storage Facility; CSF: Continuous Storage Facility; DAM: Day-ahead Market; DR: Demand Response; ESF: Energy Storage Facility; ESR: Electric Storage Resource; MSR: Market Storage Resource; NGR: Non-Generator Resource; POI: Point of Interconnection; PSH: Pumped Storage Hydro; RTM: Real-time Market; SOC: State of Charge; SOCM: SOC Management

State of Charge Management: Options

