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SUMMARY 

 
Power systems are increasingly dependent on weather and the impacts of extreme weather events.  This 

is driven by rapid integration of variable renewable resources and increased inter-dependency between 

power and fuel supply networks.  Evaluating the adequacy of systems with increasingly complex 

probabilistic interactions among individual system components requires high fidelity models with 

realistic representation of operational and grid constraints, hence can  capture operational flexibility and 

limitations, and the outcome of decision-making processes.  Traditional assessments of resource 

adequacy omit many of these details and are insufficient to identify system needs with correlated impacts 

of weather in space and time. 

 

In this paper, we introduce a probabilistic extension of electricity production cost minimization tools 

that supports the use of high-fidelity models. These tools are able to accurately simulate the temporal 

and spatial relationships affecting system physics and economics. The ability to use high-fidelity models 

enables accurate calculation of dual variables and their use in defining reliability metrics that accurately 

represent the economic and engineering characteristics of all resources.  In particular, the use of dual 

variables captures impacts of time-coupled resources and constraints such as storage and limited fuel 

supply. By bringing economic metrics directly into reliability analysis, we can supplement traditional 

reliability metrics with economically justified reliability criteria for use by system planning and 

operations.  

 

High fidelity probabilistic models rich with operational and engineering details are computationally 

intensive, and using these models in the Monte Carlo fashion for probabilistic analysis has been 

considered computationally intractable. In this paper, we demonstrate that tractability can be achieved 

by combining parallel cloud computing technology with efficient math programming and multi-layered 

scenario reduction techniques.  These techniques can be applied to multiple dimensions, such as weather 

scenarios, time, and random outages. 
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We illustrate these techniques and their computational performance using a high-fidelity model of a 

real-sized US market, more specifically ERCOT (Electric Reliability Council of Texas).  The model 

includes MIP based security-constrained unit commitment, realistic operational details, and co-

optimization of energy and reserves. 
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1. INTRODUCTION 

According to the North American Electric Reliability Corporation (NERC) [1], definition of power 

systems reliability consists of two fundamental concepts: adequacy and operating reliability.  Adequacy 

is defined as “the ability of the electric system to supply the aggregate electric power and energy 

requirements of electricity consumers at all times, taking into account scheduled and reasonably 

expected unscheduled outages of system components”. Operating reliability is “the ability of the electric 

system to withstand sudden disturbances such as electric short circuits or unanticipated loss of system 

components.” 

 

In practice, adequacy has been, and still is, the primary goal of planning criteria applied through 

traditional centralized planning by utilities or in the context of capacity markets.  Traditionally, adequacy 

has been concerned with how much capacity to build and to provide broad (i.e., without connection to 

the power grid) guidance on where that capacity should be located to support reliability.  

 

Operating reliability is the key determinant of a Balancing Authority’s reserve procurement policy. 

Traditionally, operational reliability has been concerned with near to short-term scheduling of existing 

capacity. 

 

Historically, there has been almost no connection between the two concepts.  Operational flexibility of 

resources that are critical from the operating reliability standpoint has rarely been a factor formally 

considered at the planning stage.  This approach to reliability emerged in the middle of the past century 

and was intended for relatively self-sufficient territories served by vertically integrated utility companies 

with few concerns for deliverability within each territory. Over time, however, interconnection and 

integration of territories into power pools and regional transmission organizations (RTOs) have 

increased concerns for deliverability [2, 3, 4].  In many regions, adequacy criteria have been modified 

to reflect the impact of transmission constraints, such as through the establishment of localized (i.e., 

zonal) capacity requirements.  These use ad-hoc rules with little or no economic justification [5]. 

 

The ongoing energy transition, with its’ rapid electrification and penetration of variable resources, calls 

for a fundamental revision of adequacy concepts, criteria, and methodologies. There are two 

fundamental problems must be addressed.  

 

First, traditional reliability metrics must be revisited. Simple and strict metrics using reserve margins 

and/or loss of load probabilities are economically inefficient and miss many reliability impacts.  With 

anticipated energy investments at a scale of $2.7 trillion dollars annually to achieve Net Zero by 2050 

[6], the economics of reliability must be addressed by adequacy metrics.  New, economically-justified 

criteria for adequacy need to be defined and implemented as soon as possible. 

 

Second, planners and operators need new tools and processes.  To capture and quantify the adequacy 

and reliability impacts of power systems dominated by weather-driven variable resources requires a 

foundational revision of analytical methods and tools.  Extreme events driven by weather are 

increasingly threatening reliable operation of the grid. Impacts of weather are driven not just by wind 

and solar generation, but also by load, transmission, thermal generation, and other connected energy 

systems such as gas pipelines and storage. Weather-driven spatial and temporal dependency among and 

between resources and loads turn the reliability assessment into an inherently dynamic problem. For 

example, contingency events are no longer probabilistically independent, and this dependency elevates 

the importance of incorporating detailed engineering impacts into resource adequacy (RA) analysis.   

 

Temporal dependency on weather also elevates the importance of operational flexibility of resources to 

respond in time and the impact of control room policies in deploying this flexibility.  It is no longer 

sufficient to consider unplanned outages and the dispatch of energy limited resources to be 

independently distributed random quantities that can be added together at some snapshot in time to 

evaluate the reliability of a system. To quantify correlated weather impacts, it is necessary to adopt 
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dynamic high-fidelity physical and operational models that capture the fundamental relationship 

between resource availability and system impacts in time and in space.  

 

Traditional RA tools and metrics fall short of capturing these relationships and, thus, correlated weather 

impacts.  Modelling these impacts is the matter of technical and economic detail, of accurately 

representing system flexibility, and the response to variability and uncertainty driven by contingencies 

and forecast errors.  Models must enable planners and operators to simulate outcomes from this 

variability and uncertainty and to understand how decisions in different decision timeframes (e.g., 

recourse and non-recourse decisions in day-ahead and real-time) impact these outcomes. Capacity not 

usable in the system due to operational constraints (transmission limits, ramp rates, minimum up and 

down times, startup times, energy limits, adjacent energy systems) has a significant impact on adequacy. 

For example, the deployment of contingency reserves (and other ancillary services) play a significant 

role in outcomes observed in the real system.   

 

Broadly, appropriate understanding of system adequacy requires identification of and ability to model 

flexible and inflexible decisions at each stage of the operating process. When making inflexible 

commitment decisions for the next operating day (e.g., commitment of slow-starting coal units), not all 

outages are known in advance and inflexible decisions must be made based on outages known at that 

time. Outages that occur during the operating day (surprising or random outages), on the other hand, 

need to be addressed with whatever flexibility remains in the system, subject to the base plan made with 

known outages.   

 

Power systems are shifting away from independent outages of large generating units and other 

components in the system to more complex correlated interactions. Conservative planning reserve 

margins cannot be used to resolve these increasingly complex interactions: These will become 

economically impractical and do not capture risks associated with the increasing range of uncertainties 

from extreme weather and surprising (unexpected) outages. 

 
Figure 1 - Breakdown of installed capacity (Capacity Classification) 

System inadequacy is increasingly driven by energy shortages that are not identifiable by reserve 

margins and instantaneous power capacity.  The impact of operational decisions on outcomes is 

magnified with increasing dependence on storage and on unavailable capacity due to operational reasons 

and surprising outages (outages that occur after inflexible decisions are made for the operating day) 

(Figure 1).  We can no longer assume that planning reserve margins are sufficiently conservative to 

address system needs.  

 

This paper addresses the needs and theoretical foundation for economically justified locational and 

temporal probabilistic RA methods.  It uses an integrated market framework as a template, but is in no 

way limited to market environments. The methodology can be employed to assess the reliability and 

economic impacts of decisions made in different time frames.   
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This paper will focus on annual assessment of day-ahead commitment decisions for planning purposes 

and on assessment of operational decisions a few days into the future. With short-term adequacy 

assessment, the objective is to reflect the stochastic risk of supply disruptions and other scarcity 

conditions in short-term energy, ancillary service, and transmission pricing. The need for RA assessment 

in shorter time frames (e.g., to capture the impact of reserve policies and maintenance scheduling) is 

increasingly being recognized [7]. 

 

The paper also introduces the use of shadow prices (i.e., dual prices) to define “Stochastic Nodal 

Adequacy Price” (SNAP) metrics that reflect the expected change in system shortage with respect to an 

increase in demand at each location in the network. At each location and time, dual variables identify 

the quantitative values of adequacy and reliability contributions of each system asset, including 

generation, storage, transmission, and demand resources. Of particular importance, dual-variable based 

metrics capture the time-coupled nature of storage and other energy limited resources when a system is 

under stress.   

 

Section 2 presents the theoretical foundation behind SNAP and other metrics. Section 3 outlines the 

probabilistic methodology and computational approach. Section 4 illustrates the methodology and 

metrics using a real-world system at scale, including results on computational performance.    

 
2. METRICS 

SNAP applies nodal shadow-price based mathematics of power network economics to the valuation of 

RA, drawing on concepts from spot pricing of electricity [8]. The original derivation of nodal adequacy 

metrics was introduced in [9] as a foundation for the nodal probabilistic capacity market structure.  An 

extended formulation defining concurrent capacity-market auction for generation and transmission 

investments was introduced in [10].   

 

As an extension of these previous concepts, SNAP is used to (i) assess the adequacy of the system at 

every location, and (ii) define financial compensation for adequacy and reliability contributions of each 

system component (e.g., generating unit, transmission line, or load side participant). Our interpretation 

of SNAP is substantially broader than the original concept of Locational Stochastic Reliability Price 

(LSRP) introduced in [9,10]. The methodology discussed in this paper allows for a more flexible and 

comprehensive definition of scarcity (i.e., dispatch of demand response units, violation of ancillary 

service requirements) and is not limited to load shed events. 

 

The core concept of SNAP is that efficient prices maximize social welfare.  This occurs when the 

marginal cost of added capacity equals the marginal cost (or damage) associated with failure to serve 

load. For a simple single-area system, this relationship is summarized by Equation (1). 

 

𝐿𝑂𝐿𝐻 × 𝑉𝑂𝐿𝐿 = 𝑀𝐶𝐶 (1) 

 

𝐿𝑂𝐿𝐻 is Loss of Load Hours, 𝑉𝑂𝐿𝐿 is Value of Lost Load, and 𝑀𝐶𝐶 is Marginal Cost of Capacity.  The 

product of 𝐿𝑂𝐿𝐻 and 𝑉𝑂𝐿𝐿 is the marginal cost of not serving load, and 𝑀𝐶𝐶  is the marginal cost of 

adding and/or maintaining generation capacity1.    

 

Equation (1) also identifies an economic criterion at the nodal level [10]: a resource is needed if: 

 

𝑬[𝐶𝑛] ≤ 𝑉𝑂𝐿𝐿 × ∑
𝜕

𝜕𝐿𝑛
𝑬[𝜃𝑛(𝑡, 𝜔)𝑈(𝑡, 𝜔)]

𝑇

𝑡=1

  (2) 

 
1 A single VOLL does not recognize the diversity of impacts arising from a failure to serve load, and should be 

understood as the VOLL of the last load served or curtailed.  However, due to historical limits on participation 

by loads in system balancing or in markets, VOLL has often been administratively defined.   



  5 

 

𝑬[𝐶𝑛] is expected annualized capacity cost of a resource at node 𝑛, 𝐿𝑛 is load at node 𝑛, 𝜃𝑛(𝑡, 𝜔) is 

capacity factor of the resource at time 𝑡 and in scenario 𝜔, and 𝑈(𝑡, 𝜔) is unserved system energy at 

time 𝑡 and in scenario 𝜔. If the condition in Equation (2) is not satisfied, building new resources is not 

justified and retirement may be justifiable. Annualized cost is per-unit of installed capacity and includes 

avoidable fixed cost and revenues. 

 

The right-hand side of Equation (2) indicates the marginal damage of unserved load valued at 𝑉𝑂𝐿𝐿 

apportioned to the capacity factor of the resource at time of scarcity.  Note that capacity factor of a 

resource and unserved energy are correlated variables and that this correlation impacts resource 

economics.  The higher the available capacity factor of a resource at the time of scarcity (when unserved 

energy is above zero), the greater the economic value of the resource.  The product 

𝑉𝑂𝐿𝐿 × 𝜕𝑈(𝑡, 𝜔) 𝜕𝐿𝑛⁄  is the locational marginal price (LMP) at a node 𝑛 from failure to serve load.  If 

a market allows 𝑉𝑂𝐿𝐿 to set prices, LMP identifies scarcity prices for both generating and load 

resources, as well as scarcity prices for contributions by other resources (e.g., transmission). If a resource 

is not available at the time of scarcity, it receives no compensation. 

 

We refer to hourly locational values of right-hand side of the above equation as 𝑆𝑁𝐴𝑃𝑛(𝑡, 𝜔), the 

stochastic nodal adequacy price of location 𝑛 at time 𝑡 and stochastic scenario 𝜔: 

𝑆𝑁𝐴𝑃𝑛(𝑡, 𝜔) = 𝑉𝑂𝐿𝐿 ×
𝜕

𝜕𝐿𝑛
𝑈(𝑡, 𝜔)   (3) 

At each node, 𝑆𝑁𝐴𝑃𝑛(𝑡, 𝜔) represents the value of injecting or reducing an additional unit of MW at 

location 𝑛 for adequacy of the entire system. Thus, SNAP represents a contribution to the Locational 

Marginal Price (LMP) made by the event of the load shedding anywhere in the system.  In the absence 

of load shedding, that contribution is uniformly zero.  If the load shedding takes place, the contribution 

could be identical in all locations in the absence of transmission constraints.  If transmission is limited, 

constrained out resources would see lower SNAP due to the reduced ability to address scarcity. 

Computationally, the value of SNAP can be determined by the same nodal mathematics as used for 

computing LMPs. 

 

𝑆𝑁𝐴𝑃𝑛(𝑡) = 𝑉𝑂𝐿𝐿 × 𝜕𝑬[𝑈(𝑡, 𝜔)] 𝜕𝐿𝑛⁄  is the adequacy price at node 𝑛 and time 𝑡. This is based on the 

assumption that identification of scarcity requires load shedding. However, scarcity could be defined in 

other ways such as the deployment of emergency resources, reserve shortages, or transient transmission 

violations.  With high penalty costs, these impacts are also included in LMP and, thus, a more general 

formulation of SNAP is: 

𝑆𝑁𝐴𝑃𝑛(𝑡, 𝜔) =  
𝜕

𝜕𝐿𝑛
∑ 𝜋𝑘𝑉𝑘(𝑡, 𝜔)

𝑘

(4) 

Where index 𝑘 refers the type of system violations considered as contributing to scarcity event, 𝑉𝑘(𝑡, 𝜔) 

is the magnitude of that violation and 𝜋𝑘 is the associated penalty. In this formulation, load shedding is 

only one type of shortage event. 

 

Generating units and storage resources are compensated for their contribution to adequacy based on 

SNAP. If, during a simulated scarcity condition a generating unit is not able to dispatch power, it is not 

compensated for adequacy contribution. In fact, Effective Load Carrying Capability on demand 

(ELCCd) is a performance measure for each generating and storage unit, calculated as the conditional 

dispatch at the time of scarcity, that can be used to evaluate the contribution of different types of 

generating resources to system adequacy. At time 𝑡, ELCCd of unit 𝑖 is given by: 

 

𝐸𝐿𝐶𝐶𝑑𝑖(𝑡) = 𝑬[𝑃𝑖(𝑡, 𝜔)|𝜔 ∈ 𝜔𝑆𝑡]   (5) 

 

where 𝑃𝑖(𝑡, 𝜔) is the dispatch of unit 𝑖 at time 𝑡 and stochastic scenario 𝜔, and 𝜔𝑆𝑡  is the set of scenarios 

with scarcity at time  (i.e., scenarios where LMP is greater than or equal to the shortage threshold price. 
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Similarly, load participants at location 𝑛 are assumed to be exposed to the scarcity payment based on 

SNAP and assessed on the net load consumption (demand minus shed load).  This creates an economic 

basis for defining the adequacy and reliability impacts of load.  For example, when variable loads are 

correlated with other loads or anti-correlated with variable generation, they have a greater impact on RA 

requirements than loads that are dispatchable.  Also, loads have a greater impact on RA requirements 

when distant from generation than loads co-located with generation.  Thus, SNAP can be used to define 

financial incentives and to implement programs that encourage efficient participation of load in system 

balancing requirements.  By defining prices that are grounded in engineering fundamentals, SNAP can 

also provide efficient and predicable price signals for future infrastructure investment in transmission 

and new technologies such as electrolyzers.   

 

Of particular importance, SNAP provides a transparent and efficient mechanism to define shortage 

events.  Shortage events are identified whenever SNAP is greater than a threshold price (shortage 

threshold price) determined by penalty costs of violations that contribute to shortage.  This accurately 

calculates the missing contributions of resources regardless of timing and location.  Traditional RA 

formulations focus on the occurrence of shortage events, but this fails to recognize the impact that 

resources in systems that have significant storage constraints and transmission congestion.  With storage 

(including constraints on fuel and emissions), resource availability and dispatch in one hour can affect 

shortages in other hours.  With congestion, resources may have limited or no impact on shortages that 

are electrically distant.   

 

2.1 Transmission metrics 

Value of transmission in carrying electricity to wherever is needed in time of scarcity is well understood 

but not well quantified in the context of adequacy. Using nodal SNAP pricing, adequacy contribution 

of transmission resources can be compensated based on the SNAP differential between the source and 

sink node of the transmission line using the following: 

 

𝐴𝑃𝑏
𝑇𝑥(𝑡) = 𝑬[𝑓𝑏(𝑡, 𝜔) × ∆𝑆𝑁𝐴𝑃𝑛′,𝑛(𝑡, 𝜔)]  (6) 

 

where 𝑏 is the index for a transmission line, 𝑓𝑏 is the flow on transmission line 𝑏 and 𝑛′, 𝑛 are the source 

and sink nodes of the line. That definition is consistent with the transmission economic criteria [9] 

according to which the transmission branch would be considered needed if: 

𝑬[𝑇𝐶𝑛] ≤ ∑ 𝑬[𝑓𝑏(𝑡, 𝜔) × ∆𝑆𝑁𝐴𝑃𝑛′,𝑛(𝑡, 𝜔)]

𝑇

𝑡=1

   (7) 

Where 𝑬[𝑇𝐶𝑛] represents the capacity cost of the transmission branch. 

 

Transmission metrics for adequacy can also be used to value the contribution from/to neighbouring 

entities during times of shortage.  

 

Another metric revealing the system-wide or local nature of the scarcity conditions is Shortage 

Localization Index (𝑆𝐿𝐼), which measures the ratio of dispatch exposed to shortage (i.e., being 

dispatched at locations with shortage) to total dispatch in a given hour with shortage conditions: 

 

𝑆𝐿𝐼(𝑡) =  
∑ 𝑬[𝑃𝑛(𝑡, 𝜔]𝑛 ∈𝑛𝑠

∑ 𝑬[𝑃𝑛(𝑡, 𝜔]𝑛 
     (8) 

where 𝑛𝑠 is the set of nodes at time 𝑡 with shortage conditions (price above shortage threshold price), 

and 𝑃𝑛(𝑡, 𝜔) is the total dispatch at location 𝑛 at time 𝑡. If the above value is equal to 1, this means that 

every generation resource is generating at locations with shortage (i.e., all of dispatch is exposed to 

shortage). Conversely, the closer the above value is to 0, the more local is shortage.  
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3. PROBABILISTIC METHODOLOGY AND COMPUTATIONAL APPROACH 

As discussed earlier, general definition of SNAP (Equation 4) allows to flexibly define (i) which events 

are shortage events, (ii) the order of actions taken to avoid shortage events. Shortage in the probabilistic 

methodology is identified through prices that exceed a threshold (shortage threshold price). 

 

The use of prices (dual variables) to detect shortage events identifies scarcity conditions even when 

there is no shortage observed in primal variables (e.g., no unserved energy).  The optimization solution 

of dual variables captures indirect impacts of all engineering constraints, including time-coupled 

constraints on storage, limited fuel availability, and transmission congestion. As a result, these prices 

provide economically justified metrics that can be used as basis for payment from/to market participants. 

 

Using optimization to simulate a wide range of events impacting system adequacy, RA can identify 

shortages that occur within a wide range of outcomes driven by weather and outages.  These results can 

be combined to calculate the value of additional capacity at each time (hour of day, season of year) and 

location (by balancing authority and electrical node).  However, due to the large number of uncertainties 

of system components and the probabilistic space, computational cost can be very large. To reduce 

computational costs and time, we employ multiple efficiency techniques and utilize cloud computing. 

 

There are two layers to the Monte Carlo simulation methodology for RA evaluation: (i) integrated 

scenario reduction for random system outage conditions using a multi-step approach and (ii) a bi-level 

stratified sampling method to efficiently allocate samples to weather scenarios or historical weather 

years as well as time periods in long-term (e.g., annual planning) studies.  

 

Filtering of random outage samples is integrated within the SCUC/SCED production cost optimization. 

The multi-step approach first solves the optimization problem in full detail (e.g., Day Ahead 

SCUC/SCED) in an “estimation” step.  This is followed by a “filter” step that solves a simplified 

optimization problem (where certain decisions are fixed to the previous estimation step) for a range of 

random outage draws. A final “analysis” step solves with full detail only those outage draws identified 

as having potential shortages in the filter step.  

 

Stratified sampling is applied to efficiently allocate outage samples to each weather scenario and time 

segment. The first step estimates the variance of shortage probability for each weather scenario and time 

segment. Additional outage samples are then allocated in proportion to the variances estimated in the 

first step. If there is no shortage detected for a particular combination of weather scenario and time 

segment, no additional samples are evaluated. Both steps in the stratified sampling approach utilizes 

cloud computing technology and solve each weather scenario and time segment in parallel.  

 
4. ILLUSTRATION USING A REAL-SIZE US MAKET – ERCOT 

We illustrate the methodology and metrics calculation on an annual model of the Electric Reliability 

Council of Texas (ERCOT).  The goal of this illustration is to identify weeks and locations within 

ERCOT with shortages and to calculate both traditional and economic adequacy metrics. This annual 

assessment is partitioned into weekly time segments run in parallel using cloud computing.  

We apply the 2022 weather year to a projection of ERCOT system conditions in the year 2024.  The 

input data (e.g., generation stack, fuel price forecasts) in the ERCOT model as well as load and 

renewable availability forecast of the weather year is based on the ENELYTIX® data service and 

platform [11] [12]. 

 

In the first round, 100 outage samples are evaluated for each week with a total computation time of 88.5 

hours and a turn-around time of 3 hours. Turn-around time is defined by the largest computation time 

among all weekly segments. For this particular weather year, the results show an LOLH (Loss of Load 

Hours) of 0.26 hours out of 8670 hours. In the second round using stratified sampling, 5,000 additional 

outage samples are evaluated distributed to weeks according to their variance and parallelized over 50 
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Virtual Machines. For this round, the resulting computational time was around 200 hours and turn-

around time was 8 hours. 

 

4.1 Model Setup 

The model is a SCUC/SCED daily rolling-horizon optimization model with a 72-hour horizon. 

Decisions for each horizon are made 15 hours in advance of the beginning of the horizon, limiting 

visibility of forced outages to those that begin at least 15 hours before the start of a day. For instance, 

decisions for Tuesday are made at 9 AM the day before (Monday) and any outage that begin afterward 

is a surprising (random) outage.  Surprizing outages must be managed by ancillary-service deployment 

such as dispatch of contingency reserves and commitment of fast-start generators. Outages that begin 

before 9 AM Monday and continue into Tuesday are known and factored into commitment decisions. 

 

4.2 Results 

Figure 2.a shows the peak load in each month for each weather zone in ERCOT, as well as peak and 

average load in the entirety of ERCOT. The load profile shows higher peak and average load in summer 

months. System-wide generation availability in Figure 2.b accounts for known forced outages (i.e., 

outages known at the time of making decisions for the next operating day) but excludes surprising 

outages. It also includes maintenance outages and units that are not available due to operational 

limitations (e.g., minimum down times following a failed startup). The month of August has the lowest 

renewable generation available on average due to low wind availability.  

 

 

  
Figure 2- Left to Right: (a) Peak load by weather zone and in peak and average load in all ERCOT, (b) 

Average load and generation availability in ERCOT. Generation availability accounts for maintenance 

and known forced outage. (c) EUE for each weather zone and total dispatch in all ERCOT exposed to 

shortage, (d) Hourly profile of generation exposed to shortage     

System-wide, Figure 2.b reveals that month of August has tighter conditions than other months given 

the balance between average load and generation availability. The tighter conditions are also reflected 

in EUE (Expected Unserved Energy) in the system for each month (Figure 2.c).  In August load shed is 

observed in almost every weather zone in varying levels. The system-wide impact of shortage in the 

month of August is also apparent from the total dispatch exposed to shortage (Figure 2.d), which is the 

basis for the calculation of “Shortage Localization Index (SLI)” (Equation 8). In Figure 3.a, distribution 
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of SLI across random outage samples in each month shows that in August, there are multiple draws with 

SLI close to 1, indicating generation in almost all locations is exposed to shortage, whereas the 

remainder of months consistently have an SLI index close to 0, revealing the local nature of shortages. 

 
Figure 3 – Left to Right : (a) Distribution of SLI across outage samples in each month (b) Congestion 

rent and violation of transmission (Tx) constraints 

 
Interestingly, the months of December and April have some dispatch albeit small in locations exposed 

to shortage, even though there are no load shed events, meaning that (i) shortage is due to other events 

in the system that set the price higher than the shortage price threshold (ii) and shortage is local.  

 
In fact, Figure 3.b shows the total congestion rent (shadow price of each transmission constraint 

multiplied by flow on the transmission line) for each month and total violation amount of transmission 

constraints (total flow above or below the limit of each transmission line), revealing that the local 

shortages observed in the months of April and December are due to transmission congestion . Comparing 

the heatmap of adequacy prices in Figure 4 between the months of August and December shows the 

high system-wide adequacy prices in the month of August due to low supply margins and local nature 

of shortage conditions in December in the Coast zone due to transmission congestion. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4 – Heat map of SNAP prices in a given hour in August and December. Bubbles in red 

represent load shed (MW) in each weather zone.   

Transmission congestion is caused by simultaneous scheduling of maintenance for generating units in 

the same location. Combined with random outages that further affect available generation in this 

location, the transmission constraint is violated since shortage is resolved more economically rather than 

zone level load shed. In that case, the penalty price associated with violating transmission constraints 

sets the price higher than shortage price threshold in these locations (Equation 4), triggering a shortage 

event . In this case, staggering the maintenance of units in the same location resolves shortage, indicating 

the importance of dynamic maintenance scheduling and operational decisions around that. 
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Generator performance during shortage events categorized by unit type, measured by ELCCd values 

(Equation 7) is shown in Figure 5. More specifically, ELCCd for a generating unit is calculated as the 

average dispatch of the unit during shortage events in its location, divided by its capacity. 

 
Figure 5 - ELCCd values in shortage event periods categorized by unit type. ST : Steam Turbine, ES : 

Energy Storage, CC : Combined Cycle  

Figure 5 summarizes the different levels of capability in addressing shortages across different generation 

technologies. ELCCd values for certain unit type categories are missing in some periods since there is 

no shortage event observed at the location of these units in those periods. In summer months, wind units 

have low ELCCd due to shortages mostly being observed during mid-day when wind availability is low. 

 

In summary, different metrics reveal different aspects of shortage events: (i) whether the issue is system-

wide or local (i.e., shortage location index), (ii) duration of the event (i.e., number of hours), and (iii) 

severity of the event (i.e., EUE). 

 

4.3 Stratified Sampling 

Based on the initial round of 100 outage samples evaluated for each week, the month of December is 

allocated the most additional outage samples by the stratified sampling process (Figure 6.a). 

 

 
 
Figure 6 – Left to Right: (a) Monthly allocation of additional outage samples as a result of stratified 

sampling analysis (b) Revised EUE with additional 5,000 random outage samples 
 
A total of 5,000 additional random outage samples are allocated to segments according to monthly 

proportions in Figure 6.a. Although the general outlook of severe months and regions with large amounts 

of load shed is the same as the first stage (Figure 2.c), the analysis with additional samples reveals load 

shed events in the months of April and December and in additional weather zones (North and West) that 

are not detected in the first stage with only 100 samples for each week (Figure 6.b). 
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In the first round of analysis with 100 outage samples per week, average standard error of shortage 

estimate over all shortage periods is 0.0124, while the standard error given the 5,000 additional outage 

samples drops to 0.003, revealing an increased precision of shortage estimate through stratified sampling 

allocation.  

 

5. SUMMARY AND CONCLUSION 

In this paper, we have laid out the foundation for a probabilistic nodal resource adequacy methodology 

that yields economically-justified metrics to value the contribution of generation, transmission, and load 

to times of scarcity. In particular, through the use of dual variables, the methodology addresses 

weaknesses of traditional adequacy methods by accurately simulating the impacts of storage, other time-

coupled constraints, and transmission congestion.  The methodology is applicable to decisions made in 

all time frames (e.g., build and retire, commitment, dispatch, storage targets, fuel allocations, emissions 

management), supporting analysis of an increasingly dynamic power system. A multi-layered 

computational approach is employed to improve computational performance and focus analysis on 

critical events driven by weather and random outages. Combined with cloud computing technology, the 

computational enhancements allow resource adequacy assessment to be performed with rapid turn-

around time without engineering simplifications with important operational details. As illustrated in the 

application of the methodology to ERCOT system in US, operational decisions such as maintenance 

scheduling and engineering limits of transmission have major impacts to the adequacy of this system. 
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